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Abstract
This thesis implements and evaluates Incrementally Verifiable Computation (IVC) using the Plonk proof system,

inspired by the Halo framework. We build on prior work on polynomial commitment and accumulation schemes
to create an IVC-friendly Plonk Protocol, supporting generic elliptic curves over a cycle of curves, and develop
an arithmetization layer with custom gates for elliptic curve operations, Boolean logic, and Poseidon-based hashing.

Benchmarks show that the prover runs in ~300 seconds (parallel) and the verifier runs in ~3 seconds,
with proof sizes around 10 kB. While naive signature verification remains faster in the short term, IVC proofs
become more efficient in size after only 87 days, and further optimizations could reduce costs. These results
suggest that IVC is close to practical viability for blockchain applications, and that optimized frameworks such
as Kimchi or Halo2 are well-positioned for real-world deployment.
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1 Introduction
Valiant originally described IVC - Incrementally Verifiable Computation - in his 2008 paper[Valiant 2008]:

Suppose humanity needs to conduct a very long computation which will span superpolynomially many
generations. Each generation runs the computation until their deaths when they pass on the computational
configuration to the next generation. This computation is so important that they also pass on a proof that
the current configuration is correct, for fear that the following generations, without such a guarantee,
might abandon the project. Can this be done?

If a computation runs for hundreds of years and ultimately outputs 42, how can we check its correctness without
re-executing the entire process? In order to do this, the verification of the final output of the computation must be
much smaller than simply running the computation again. Valiant creates the concept of IVC and argues that it can
be used to achieve the above goal.

Recently, IVC has seen renewed interest with cryptocurrencies, as this concept lends itself well to the structure of
blockchains. It allows a blockchain node to omit all previous transaction history in favour of only a single state, for
example, containing all current account balances. Each state-transition, where transactions are processed, can then
be verified with a SNARK, Succinct Non-interactive Argument of Knowledge, very small proofs of large statements.
This type of blockchain is commonly called a succinct blockchain.

A softer approach is to use IVC to prove that the current block corresponds to the most recent block in a chain
originating from the genesis block. This allows for near-instant blockchain catch-up for light nodes. A light node
is a blockchain node with lower security standards than a full node, but it allows the node to dedicate fewer
computational resources and hard drive space. This light node still need to catch-up to the current block in the
blockchain, which involves downloading and verifying all previous blocks. This yields less security than in a succinct
blockchain, but has the advantage of being much simpler than proving the validity of a the transactions in a block
in-circuit. It also requires minimal changes to an existing blockchain.

IVC has notably been used by the Mina[2025] succinct blockchain blockchain. This is enabled by increasingly efficient
recursive proof systems, one of the most used in practice is based on Halo[Bowe et al. 2019], which includes Halo2
by the Electric Coin Company (to be used in Zcash) and Kimchi developed and used by Mina. Both can be broken
down into the following main components:

• Plonk: A general-purpose, potentially zero-knowledge, SNARK.
• PCDL: A Polynomial Commitment Scheme in the Discrete Log setting.
• ASDL: An Accumulation Scheme for Evaluation Proof instances in the Discrete Log setting.
• Pasta: A cycle of elliptic curves, Pallas and Vesta, collectively known as Pasta.

A previous project[Jakobsen 2025] by one of the authors of this thesis, analyzed and implemented the accumulation
and polynomial commitment schemes.

We aim to create a simplified recursive SNARK based on Halo and use it to create a chain of signatures. We argue
that this chain of signatures can be used in certain modern blockchains to achieve near-instant blockchain catch-up.

In section 3 we define PCDL. In section 4 we define ASDL. In section 5 we define a modified Plonk based on PCDL
and ASDL with all custom gates needed to achieve an IVC-friendly SNARK. In section 6 define an IVC-circuit for
proving the validity of a chain of signatures. In section 7 we formally define the arithmetization pipeline needed
for the defined Plonk Scheme. In section 8 we discuss the implementation of the IVC circuit for verifying a chain
of signatures, and benchmark the performance. Both this document and the implementation can be found in the
project’s repository[Jakobsen and Latiff 2025].

2 Prerequisites
Basic knowledge of elliptic curves, groups and interactive arguments is assumed in the following text. Basic familiarity
with SNARKs is also assumed.

The following subsections introduce the concept of Incrementally Verifiable Computation (IVC) along with some
background concepts. These concepts lead to the introduction of accumulation schemes and polynomial commitment
schemes, the main focus of this paper. Accumulation schemes, in particular, will be demonstrated as a means to
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create more flexible IVC constructions compared to previous approaches, allowing IVC that does not depend on a
trusted setup.

As such, these subsections aim to provide an overview of the evolving field of IVC, the succinct proof systems that
lead to its construction, and the role of accumulation schemes as an important cryptographic primitive with practical
applications.

2.1 Notation
The following table denotes the meaning of the notation used throughout the document:

[n] Denotes the integers {1, ..., n}
a ∈ F A field element of an unspecified field
a ∈ Fq A field element in a prime field of order q
a ∈ Sn

q A vector of length n consisting of elements from set S
G ∈ E(Fq) An elliptic Curve point, defined over field Fq

G ∈ Ep(Fq) An elliptic Curve point, defined over field Fq, where the curve
has order p

(a1, . . . , an) = [xi]n = [xi]ni=1 = a ∈ Sn
q A vector of length n

a ∈R S a is a uniformly randomly sampled element of S
(S1, . . . , Sn) In the context of sets, the same as S1 × · · · × Sn

a ++ b where a ∈ Fn
q , b ∈ Fm

q Concatenate vectors to create c ∈ Fn+m
q .

a ++ b where a ∈ Fq Create vector c = (a, b).
I.K w “I Know”, Used in the context of proof claims, meaning I have

knowledge of the witness w
B A boolean, i.e. {⊥,⊤}
Option(T ) Either a value T or ⊥, i.e. {T,⊥}
Result(T, E) Either a value T or a value E, i.e. {T, E}

We use additive notation for the elliptic curve group. Note that the following are isomorphic {⊤,⊥} ∼= B ∼=
Option(⊤) ∼= Result(⊤,⊥), but they have different connotations. Generally for this report, Option(T ) models
optional arguments, where ⊥ indicates an empty argument and Result(T,⊥) models the result of a computation
that may fail, especially used for rejecting verifiers.

2.2 Proof Systems
An Interactive Proof System consists of two Interactive Turing Machines: a computationally unbounded Prover, P,
and a polynomial-time bounded Verifier, V. The Prover tries to convince the Verifier of a statement X ∈ L, with
language L in NP. The following properties must be true:

• Completeness: ∀P ∈ ITM, X ∈ L =⇒ Pr[Vout = ⊥] ≤ ϵ(X)

For all honest provers, P , where X is true, the probability that the verifier remains unconvinced (Vout = ⊥) is
negligible in the length of X.

• Soundness: ∀P∗ ∈ ITM, X /∈ L =⇒ Pr[Vout = ⊤] ≤ ϵ(X)

For all provers, honest or otherwise, P∗, that try to convince the verifier of a claim, X, that is not true, the
probability that the verifier will be convinced (Vout = ⊤) is negligible in the length of X.

An Interactive Argument is very similar, but the honest and malicious prover are now polynomially bounded and
receive a Private Auxiliary Input, w, not known by V . This is such that V can’t just compute the answer themselves.
Definitions follow:

• Completeness: ∀P(w) ∈ PPT, X ∈ L =⇒ Pr[Vout = ⊥] ≤ ϵ(X)
• Soundness: ∀P∗ ∈ PPT, X /∈ L =⇒ Pr[Vout = ⊤] ≤ ϵ(X)

Proofs of knowledge are another type of Proof System, here the prover claims to know a witness, w, for a statement
X. Let X ∈ L and W (X) be the set of witnesses for X that should be accepted in the proof. This allows us to
define the following relation: R = {(X, w) : X ∈ L, w ∈W (X)}
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A proof of knowledge for relation R is a two party protocol (P,V) with the following two properties:

• Knowledge Completeness: Pr[P(w) ⇐⇒ Vout = ⊤] = 1, i.e. as in Interactive Proof Systems, after an
interaction between the prover and verifier the verifier should be convinced with certainty.

• Knowledge Soundness: Loosely speaking, Knowledge Soundness requires the existence of an efficient
extractor E that, when given a possibly malicious prover P∗ as input, can extract a valid witness with
probability at least as high as the probability that P∗ convinces the verifier V.

The above proof systems may be zero-knowledge, which in loose terms means that anyone looking at the transcript,
that is the interaction between prover and verifier, will not be able to tell the difference between a real transcript
and one that is simulated. This ensures that an adversary gains no new information beyond what they could have
computed on their own. We now define the property more formally:

• Zero-knowledge: ∀V∗(δ).∃SV∗(X) ∈ PPT.SV∗ ∼C (P,V∗)

V∗ denotes a verifier, honest or otherwise, δ represents information that V∗ may have from previous executions of
the protocol and (P,V∗) denotes the transcript between the honest prover and (possibly) malicious verifier. There
are three kinds of zero-knowledge:

• Perfect Zero-knowledge: ∀V∗(δ).∃SV∗(X) ∈ PPT.SV∗ ∼P (P,V∗), the transcripts SV∗(X) and (P,V∗) are
perfectly indistinguishable.

• Statistical Zero-knowledge: ∀V∗(δ).∃SV∗(X) ∈ PPT.SV∗ ∼S (P,V∗), the transcripts SV∗(X) and (P,V∗)
are statistically indistinguishable.

• Computational Zero-knowledge: ∀V∗(δ).∃SV∗(X) ∈ PPT.SV∗ ∼C (P,V∗), the transcripts SV∗(X) and
(P,V∗) are computationally indistinguishable, i.e. no polynomially bounded adversary A can distinguish them.

Where two distributions D1, D2 are:

• Perfectly indistinguishable if they are identical, meaning no observer, even with unbounded power, can tell
them apart:
∀x : Pr[D1 = x] = Pr[D2 = x]

• Statistically indistinguishable if their statistical distance is negligible, meaning that they may differ, but the
difference is vanishingly small, even for an unbounded adversary:
∀x : ∆(D1, D2) := 1

2
∑

x

∣∣ Pr[D1 = x]− Pr[D2 = x]
∣∣ ≤ negl(λ)

• Computationally indistinguishable if no probabilistic polynomial-time distinguisher A can tell them apart with
more than negligible advantage, though an unbounded adversary might:
∀x : |Pr[A(x)→ D1]− Pr[A(x) = D2]| ≤ negl(λ)

2.3 Fiat-Shamir Heuristic
The Fiat-Shamir heuristic turns a public-coin (an interactive protocol where the verifier only sends uniformly sampled
challenge values) interactive proof into a non-interactive proof, by replacing all uniformly random values sent from
the verifier to the prover with calls to a non-interactive random oracle. In practice, a cryptographic hash function, ρ,
is used. Composing proof systems will sometimes require domain-separation, whereby random oracles used by one
proof system cannot be accessed by another proof system. In practice one can have a domain specifier, for example
0, 1, prepended to each message that is hashed using ρ:

ρ0(m) = ρ(0 ++ m), ρ1(m) = ρ(1 ++ m)

2.4 Pedersen Commitments
A commitment scheme is a cryptographic primitive that allows one to commit to a chosen value while keeping it
hidden to others, with the ability to reveal the committed value later. Commitment schemes are designed so that
the committing party cannot change the value after they have committed to it, i.e. it is binding. The fact that
anyone that receives the commitment cannot compute the value from the it is called hiding.

To reveal a value one can simply send the value to a party that previously received the commitment, and the
receiving party can compute the commitment themselves and compare to the previously received commitment. One
such commitment scheme is the Pedersen commitment scheme[Pedersen 1992]:
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Algorithm: CM.COMMIT

Inputs
m : Fn The vectors we wish to commit to.
ppCM The public parameters for the commitment scheme.
ω : Option(F) Optional hiding factor for the commitment.

Output
C : E(Fq) The Pedersen commitment.

1: Parse G : E(F)n, S : E(F) from ppCM.
2: Output C := ⟨m, G⟩+ ωS.

Notice, that the inputs is a vector of messages, not just a single message. Inclusion of a hiding factor makes the
commitment perfectly hiding, but computationally binding. If the hiding factor is omitted, it is commonly called a
deterministic Pedersen commitment and the commitment will be perfectly binding and computationally hiding. For
C = CM.COMMIT(m, G, ω)

• Perfect Hiding: Given C, it is impossible to determine m, no matter your computational power.
• Computational Hiding: It is computationally infeasible to determine the value committed to, from the

commitment
• Perfect Binding: It is impossible to change the value committed to, no matter your computational power.
• Computational Binding: It is computationally infeasible to change the value committed to.

The corresponding setup algorithm is:

Algorithm: CM.SETUPρ

Inputs
λ The security parameter, in unary form.
L The maximum size vector that can be committed to.

Output
ppCM The public parameters to be used in CM.COMMIT

1: (E(Fq), q, G)← SampleGroupρ(1λ)
2: Choose independently uniformly-sampled generators in E(Fq), G ∈R E(Fq)L, S ∈R E(Fq) using ρ0.
3: Output ppCM = ((E(Fq), q, G), G, S)

Pedersen commitments are an instance of a very useful type of commitment scheme for proof systems is that of a
homomorphic commitment scheme, where:

CM.COMMIT(m1, r1) + CM.COMMIT(m2, r2) = CM.COMMIT(m1 + m2, r1 + r2)

That is, you can add the commitments which corresponds to adding the committed inputs and then commititing.
This lets a verifying party check the properties of committed values without needing to know them. Since the public
parameters can be chosen uniformly randomly, this type of setup is untrusted.

2.5 Trusted and Untrusted Setups
Many SNARK constructions, such as the original Plonk specification, depend on a trusted setup to ensure soundness.
A trusted setup generates a Structured Reference String (SRS) with a particular internal structure. For Plonk, this
arises from the KZG[Kate et al. 2010] commitments used. These commitments allow the SNARK verifier to achieve
sub-linear verification time. However, this comes at the cost of requiring a trusted setup, whereas PCDL for example,
uses an untrusted setup.

An untrusted setup, creates a Uniform Random String of the form:

URS = {a1G, a2G, . . . , aDG}

Where D represents the maximum degree bound of a polynomial (in a PCS context) and G is a generator of E(F).
The URS must consist solely of generators and all the scalars must be uniformly random. PCDL is then sound,
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provided that no adversary knows the scalars. Extracting a from the URS would require solving the Discrete
Logarithm problem (DL), which is assumed to be hard.

To generate the URS transparently, a collision-resistant hash function H : B∗ → E(Fq) can be used to produce the
generators. The URS can then be derived using a genesis string s:

URS = {H(s ++ 1),H(s ++ 2), . . . ,H(s ++ D)}

The genesis string can be any arbitrary string, that convinces outsiders that it’s not maliciously chosen. This is
commonly referred to as nothing-up-my-sleeve numbers. We used the string:

To understand recursion, one must first understand recursion.

Anyone can verify that the URS was generated from this string, and the probability that such a specific string,
hashed, would lead to a known discrete log, should be negligible.

2.6 SNARKS
SNARKs - Succinct Non-interactive Arguments of Knowledge - have seen increased usage due to their application in
blockchains and cryptocurrencies. They also typically function as general-purpose proof schemes. This means that,
given any solution to an NP-problem, the SNARK prover will produce a proof that they know the solution to said
NP-problem. Most SNARKs also allow for zero-knowledge arguments, making them zk-SNARKs.

More concretely, imagine that Alice has today’s Sudoku problem X ∈ NP: She claims to have a solution to this
problem, her witness, w, and wants to convince Bob without having to reveal the entire solution. She could then use
a SNARK to generate a proof for Bob. To do this she must first encode the Sudoku verifier as a circuit RX , then let
x represent public inputs to the circuit, such as today’s Sudoku values/positions, etc, and then give the SNARK
prover the public inputs and her witness, π = SNARK.PROVER(RX , x, w). Finally she sends this proof, π, to Bob
along with the public Sudoku verifying circuit, RX , and he can check the proof and be convinced using the SNARK
verifier (SNARK.VERIFIER(RX , x, π)).

Importantly, the ‘succinct’ property means that the proof size and verification time must be sub-linear. This allows
SNARKs to be directly used for Incrementally Verifiable Computation.

2.7 Bulletproofs
In 2017, the Bulletproofs paper[Bünz et al. 2017] was released1. Bulletproofs rely on the hardness of the Discrete
Logarithm problem, and uses an untrusted setup. It has logarithmic proof size, linear verification time and lends
itself well to efficient range proofs. It’s also possible to generate proofs for arbitrary circuits, yielding a zk-NARK.
It’s a NARK since we lose the succinctness in terms of verification time, making Bulletproofs less efficient than
SNARKs.

At the heart of Bulletproofs lies the Inner Product Argument (IPA), wherein a prover demonstrates knowledge of
two vectors, a, b ∈ Fn

q , with commitment P ∈ E(Fq), and their corresponding inner product, c = ⟨a, b⟩. It creates a
non-interactive proof, with only lg(n) size, by compressing the point and vectors lg(n) times, halving the size of the
vectors each iteration in the proof. Unfortunately, since the IPA, and by extension Bulletproofs, suffer from linear
verification time, Bulletproofs are unsuitable for IVC.

2.8 Incrementally Verifiable Computation
In order to achieve IVC, you need a function F (x) ∈ S → S along with some initial state s0 ∈ S. Then you can call
F (x) n times to generate a series of s’s, s ∈ Sn+1:

s0 s1 s2 . . . sn

F (s0) F (s1) F (s2) F (sn−1)

Figure 1: A visualization of the relationship between F (x) and s in a non-IVC setting.
1A gentle introduction can be found in “From Zero (Knowledge) to Bulletproofs”[Gibson 2022], which also describes Pedersen

commitments and the concept of zero-knowledge.
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In a blockchain setting, you might imagine any si ∈ s as a set of accounts with corresponding balances, and the
transition function F (x) as the computation happening when a new block is created and therefore a new state, or
set of accounts, si is computed2.

In the IVC setting, we have a proof, π, associated with each state, so that anyone can take only a single pair (sm, πm)
along with the initial state and transition function (s0, F (x)) and verify that said state was computed correctly.

s0 (s1, π1) . . . (sn, πn)
P(s0,⊥) P(s1, π1) P(sn−1, πn−1)

Figure 2: A visualization of the relationship between F, s and π in an IVC setting using traditional SNARKs.
P(si, πi) denotes running the SNARK.PROVER(RF , x = {s0, si}, w = {si−1, πi−1}) = πi and F (si−1) = si, where
RF is the transition function F expressed as a circuit.

The proof πi describes the following claim:

"The current state si is computed from applying the function, F , i times to s0 (si = F i(s0) = F (si−1))
and the associated proof πi−1 for the previous state is valid."

Or more formally, πi is a proof of the following claim, expressed as a circuit R:

R := I.K. w = {πi−1, si−1} s.t. si
?= F (si−1) ∧ (si−1

?= s0 ∨ SNARK.VERIFIER(RF , x = {s0, si}, πi−1) ?= ⊤))

Where I.K. denotes “I Know”. Note that RF , si, s0 are not quantified above, as they are public values. Each
state, si, including the genesis state, s0, must also contain the current iteration, i, for soundness to hold. The
SNARK.VERIFIER represents the verification circuit in the proof system we’re using. This means, that we’re taking
the verifier, representing it as a circuit, and then feeding it to the prover. This is not a trivial task in practice! Note
also, that the verification time must be sub-linear to achieve an IVC scheme, otherwise the verifier could just have
computed F n(s0) themselves, as s0 and F (x) necessarily must be public.

To see that the above construction works, observe that π1, . . . , πn proves:

I.K. πn−1 s.t. sn = F (sn−1) ∧ (sn−1 = s0 ∨ SNARK.VERIFIER(R, x, πn−1) = ⊤),
I.K. πn−2 s.t. sn−1 = F (sn−2) ∧ (sn−2 = s0 ∨ SNARK.VERIFIER(R, x, πn−2) = ⊤), . . .

s1 = F (s0) ∧ (s0 = s0 ∨ SNARK.VERIFIER(R, x, π0) = ⊤)

Which means that:
SNARK.VERIFIER(R, x, πn) = ⊤ =⇒
sn = F (sn−1) ∧
SNARK.VERIFIER(R, x, πn−1) = ⊤ ∧
sn−1 = F (sn−2) =⇒ . . .

SNARK.VERIFIER(R, x, π1) = ⊤ =⇒
s1 = F (s0)

Thus, by induction sn = F n(s0)

2.9 The Schwarz-Zippel Lemma
The Schwarz-Zippel lemma is commonly used in succinct proof systems to test polynomial identities. Formally it
states:

ξ ∈R F : Pr[p(ξ) = 0 | p(X) ̸= 0] = d

F

Meaning that if p(X) is not the zero-polynomial, the evaluation at a uniformly random point from F, will equal zero
with at most d /F probability. This can also be used to check equality between polynomials:

2In the blockchain setting, the transition function would also take an additional input representing new transactions, F (x : S, T : P(T )).
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ξ ∈R F
r(X) = p(X)− q(X)

r(ξ) ?= 0

Or equivalently:

p(ξ) ?= q(ξ)

Meaning that p(X) = q(X) with probability at least d /F.

2.10 Polynomial Interpolation
It is well known that given d + 1 evaluations, an evaluation domain, p(e) := [p(e)

1 , . . . , p
(e)
d+1], of a polynomial p(X),

you can reconstruct the polynomial using Lagrange interpolation:

p(X) = lagrange(p(e))

With a worst-case runtime of O(d2). However, if the evaluation points are chosen to be the n-th roots of unity,
i.e. the set:

{ω1, ω2, . . . , ωn}

where ω is a primitive n-th root of unity, then interpolation can be reduced to applying a discrete Fourier transform.
We can then choose n ≥ d + 1, and evaluate at all n points of the domain. Setting n to be the next power of 2 above
d + 1 allows us to use the very efficient radix-2 FFT:

p(e) := [p(e)
1 , . . . , p(e)

n ]
p(X) = ifft(p(e))
p(e) = fft(p(X))

Where both the evaluation domain and polynomial can be computed efficiently using the Fast Fourier Transform in
time O(n log n). This approach can be used whenever the underlying field contains a primitive n-th root of unity
and n is invertible in the field, which is the case for many finite fields used in cryptography including the fields used
in this project.

2.11 Polynomial Commitment Schemes
In the SNARK section, general-purpose proof schemes were described. Modern general-purpose (zero-knowledge)
proof schemes, such as Sonic[Maller et al. 2019], Plonk[Gabizon et al. 2019] and Marlin[Chiesa et al. 2019], commonly
use Polynomial Commitment Schemes (PCSs) for creating their proofs. This means that different PCSs can be used
to get security under weaker or stronger assumptions.

• KZG PCSs: Uses a trusted setup, which involves generating a Structured Reference String for the KZG
commitment scheme[Kate et al. 2010]. This would give you a traditional SNARK.

• Bulletproofs PCSs: Uses an untrusted setup, assumed secure if the Discrete Log problem is hard, the verifier
is linear.

• FRI PCSs: Also uses an untrusted setup, assumes secure one way functions exist. It has a higher constant
overhead than PCSs based on the Discrete Log assumption, but because it instead assumes that secure one-way
functions exist, you end up with a quantum secure PCS.

A PCS allows a prover to prove to a verifier that a committed polynomial evaluates to a certain value, v, given an
evaluation input z. There are five main functions used to prove this (PC.TRIM omitted as it’s unnecessary):

• PC.SETUP(λ, D)ρ → ppPC

The setup routine. Given security parameter λ in unary and a maximum degree bound D. Creates the public
parameters ppPC.
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• PC.COMMIT(p : Fd′

q [X], d : N, ω : Option(Fq))→ E(Fq)

Commits to a degree-d′ polynomial p with degree bound d where d′ ≤ d using optional hiding ω.

• PC.OPENρ(p : Fd′

q [X], C : E(Fq), d : N, z : Fq, ω : Option(Fq))→ EvalProof

Creates a proof, π ∈ EvalProof , that the degree d′ polynomial p, with commitment C, and degree bound d
where d′ ≤ d, evaluated at z gives v = p(z), using the hiding input ω if provided.

• PC.CHECKρ(C : E(Fq), d : N, z : Fq, v : Fq, π : EvalProof)→ Result(⊤,⊥)

Checks the proof π that claims that the degree d′ polynomial p, with commitment C, and degree bound d
where d′ ≤ d, evaluates to v = p(z).

Any NP-problem, X ∈ NP , with a witness w can be compiled into a circuit RX . This circuit can then be fed to a
general-purpose proof scheme prover PX along with the witness and public input (x, w) ∈ X, that creates a proof of
the statement ”RX(x, w) = ⊤”. Simplifying slightly, they typically consists of a series of pairs representing opening
proofs:

(q1 = (C1, d, z1, v1, π1), . . . , qm = (Cm, d, zm, vm, πm))

These pairs will henceforth be more generally referred to as instances, q ∈ Instancem. They can then be verified
using PC.CHECK:

PC.CHECK(C1, d, z1, v1, π1) ?= . . .
?= PC.CHECK(Cm, d, zm, vm, πm) ?= ⊤

Along with some checks that the structure of the underlying polynomials p, that q was created from, satisfies
any desired relations associated with the circuit RX . We can model these relations, or identities, using a function
IX ∈ Instance→ {⊤,⊥}. If,

∀j ∈ [m] : PC.CHECK(Cj , d, zj , vj , πj) ?= ⊤ ∧ IX(qj) ?= ⊤

Then the verifier VX will be convinced that w is a valid witness for X. In this way, a proof of knowledge of a witness
for any NP-problem can be represented as a series of PCS evaluation proofs, including our desired witness that
sn = F n(s0).

A PCS has soundness and completeness properties, as well as a binding property:

Completeness: For every maximum degree bound D = poly(λ) ∈ N and publicly agreed upon d ∈ N:

Pr


deg(p) ≤ d ≤ D,

PC.CHECKρ(C, d, z, v, π) = 1

ρ← U(λ)
ppPC ← PC.SETUPρ(1λ, D),

(p, d, z, ω)← Aρ(ppPC),
v ← p(z),
C ← PC.COMMITρ(p, d, ω),
π ← PC.OPENρ(p, C, d, z, ω)


= 1.

In other words, an honest prover will always convince an honest verifier.

Knowledge Soundness: For every maximum degree bound D = poly(λ) ∈ N, polynomial-size adversary A and
publicly agreed upon d, there exists an efficient extractor E such that the following holds:

Pr


PC.CHECKρ(C, d, z, v, π) = 1

⇓
C = PC.COMMITρ(p, d, ω)
v = p(z), deg(p) ≤ d ≤ D

ρ← U(λ)
ppPC ← PC.SETUPρ(1λ, D)

(C, d, z, v, π)← Aρ(ppPC)
(p, ω)← Eρ(ppPC)

 ≥ 1− negl(λ).

In other words, for any adversary, A, outputting an instance, the knowledge extractor can recover p such that the
following holds: C is a commitment to p, v = p(c), and the degree of p is properly bounded. Note that for this
protocol, we have knowledge soundness, meaning that A, must actually have knowledge of p (i.e. the E can extract
it).

Binding: For every maximum degree bound D = poly(λ) ∈ N and publicly agreed upon d, no polynomial-size
adversary A can find two polynomials s.t:
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Pr


p1 ∈ F[X]≤d, p2 ∈ F[X]≤d, p1 ̸= p2

∧
C1 = C2

ρ← U(λ)
ppPC ← PC.SETUPρ(1λ, D)

(p1, p2, d, ω1, ω2)← Aρ(ppPC)
C1 ← PC.COMMIT(p1, d, ω1)
C2 ← PC.COMMIT(p2, d, ω2)

 ≤ negl(λ).

In other words, the adversary cannot change the polynomial that he committed to.

2.12 Accumulation Schemes
In 2019 Halo[Bowe et al. 2019] was introduced, the first practical example of recursive proof composition without
a trusted setup. Using a modified version of the Bulletproofs-style Inner Product Argument (IPA), they present
a polynomial commitment scheme. Computing the evaluation of a polynomial p(z) as v = ⟨p(coeffs), z⟩ where
z = (z0, z1, . . . , zd) and p(coeffs) ∈ Fd+1 is the coefficient vector of p(X), using the IPA. However, since the
vector z is not private, and has a certain structure, we can split the verification algorithm in two: A sub-linear
PCDL.SUCCINCTCHECK and linear PCDL.CHECK. Using the PCDL.SUCCINCTCHECK we can accumulate n instances,
and only perform the expensive linear check (i.e. PCDL.CHECK) at the end of accumulation.

In 2020 a paper[Bünz et al. 2020] was released where the authors presented a generalized version of the previous
accumulation structure of Halo that they coined Accumulation Schemes. Simply put, given a predicate Φ :
Instance→ {⊤,⊥}, and m representing the number of instances accumulated for each proof step and may vary for
each time AS.PROVER is called. An accumulation scheme then consists of the following functions:

• AS.SETUP(λ)→ ppAS

When given a security parameter λ (in unary), AS.SETUP samples and outputs public parameters ppAS.

• AS.PROVER(q : Instancem, acci−1 : Acc)→ Acc

The prover accumulates the instances {q1, . . . , qm} in q and the previous accumulator acci−1 into the new
accumulator acci.

• AS.VERIFIER(q : Instancem, acci−1 : Option(Acc), acci : Acc)→ Result(⊤,⊥)

The verifier checks that the instances {q1, . . . , qm} in q were correctly accumulated into the previous accumulator
acci−1 to form the new accumulator acci. The second argument acci−1 is modelled as an Option since in the
first accumulation, there will be no accumulator acc0. In all other cases, the second argument acci−1 must be
set to the previous accumulator.

• AS.DECIDER(acci : Acc)→ Result(⊤,⊥)

The decider performs a single check that simultaneously ensures that all the instances q accumulated in acci

satisfy the predicate, ∀j ∈ [m] : Φ(qj) = ⊤. Assuming the AS.VERIFIER has accepted that the accumulator,
acci correctly accumulates q and the previous accumulator acci−1.

The completeness and soundness properties for the Accumulation Scheme is defined below:

Completeness. For all (unbounded) adversaries A, where f represents an algorithm producing any necessary
public parameters for Φ:

Pr


AS.DECIDERρ(acci) = ⊤
∀j ∈ [m] : Φρ

ppΦ
(qj) = ⊤

⇓
AS.VERIFIERρ(q, acci−1, acci) = ⊤

AS.DECIDERρ(acc) = ⊤

ρ← U(λ)
ppΦ ← fρ

ppAS ← AS.SETUPρ(1λ)
(q, acci−1)← Aρ(ppAS, ppΦ)

acci ← AS.PROVERρ(q, acci−1)

 = 1.

I.e, (AS.VERIFIER, AS.DECIDER) will always accept the accumulation performed by an honest prover.
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Soundness: For every polynomial-size adversary A:

Pr


AS.VERIFIERρ(q, acci−1, acci) = ⊤

AS.DECIDERρ(acci) = ⊤
⇓

AS.DECIDERρ(acci−1) = ⊤
∀j ∈ [m], Φρ

ppΦ
(qj) = ⊤

ρ← U(λ)
ppΦ ← fρ

ppAS ← AS.SETUPρ(1λ)
(q, acci−1, acci)← Aρ(ppAS, ppΦ)

 ≥ 1− negl(λ).

I.e, For all efficiently-generated accumulators acci−1, acci ∈ Acc and predicate inputs q ∈ Instancem,
if AS.DECIDER(acci) = ⊤ and AS.VERIFIER(qi, acci−1, acci) = ⊤ then, with all but negligible probability,
∀j ∈ [m] : Φ(ppΦ, qj) = ⊤ and AS.DECIDER(acci) = ⊤.

2.13 Cycles of Curves
An elliptic curve over a finite field F is defined by an equation of the form:

y2 = x3 + ax + b

The set of points E(F) = F× F forms an abelian group under point addition, where adding two points R = P + Q is
given by simple algebraic formulas in F, and each point has an inverse given by reflection across the x-axis. There is
an additional point O, the point at infinity, for which it holds that P +O = O + P = P .

P
Q

R

x

y

(a) Elliptic curve y2 = x3 − x + 1 with points P , Q, and
R = P + Q.

P

R

x

y

(b) Elliptic curve y2 = x3 − x + 1 with point P point
R = 2P .

Figure 3: Two representations of the elliptic curve y2 = x3 − x + 1 showing point addition and doubling operations.

Repeated addition defines scalar multiplication. When modelling scalar multiplication, we need two fields, a
scalar-field FS and a base-field FB. To see why, consider the operation aP , where a ∈ FS and P ∈ ES(FB), then the
order of the scalar field must be equal to the order of the elliptic curve. Naively, one could choose the larger field of
the two for a SNARK circuit and model computation over the smaller field, by using modulo operation in-circuit.
With such an approach the circuit is modelling foreign-field arithmetic which is very expensive per foreign field
operation.

To simplify elliptic curve operations, a cycle of curves can be used. A cycle of curves use the other’s scalar field as
their base field and vice-versa. This means that field operations can be handled natively in the scalar field circuit FS
and elliptic curve operations are handled natively in the basefield circuit FB. This improves performance drastically,
since the SNARK never need to handle foreign field arithmetic. The cycle of curves used in this project is the Pasta
curves[Hopwood 2021], Pallas and Vesta, both of which have the curve equation y2 = x3 + 5:

• Pallas: a ∈ Fp, P ∈ Ep(Fq)
• Vesta: a ∈ Fq, P ∈ Eq(Fp)

Where:

• |Fp| = p, |Fq| = q, |Ep(Fq)| = p, |Ep(Fq)| = q, p > q
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• p = 2254 + 45560315531419706090280762371685220353
• q = 2254 + 45560315531506369815346746415080538113

This is useful when creating proofs. Starting in the first proof in an IVC-setting, we need a proof that verifies some
relation, the simplest minimal example would be R(aP ) := aP

?= O. This then creates two constraint tables and two
proofs, one over FS = Fp and one over FB = Fq. Then, in the next IVC-step, we need to verify both proofs, but the
proof over Fp produces scalars over Fp and points over Ep(Fq) and the proof over Fq produces scalars over Fq and
points over Ep(Fq). This is because a proof of R(aP ) needs to contain both scalars and points. If we did not have a
cycle of curves this pattern would result in a chain:

• Curve 1: a ∈ Fp1 , P ∈ Ep1(Fp2)
• Curve 2: a ∈ Fp2 , P ∈ Ep2(Fp3)
• Curve 3: a ∈ Fp3 , P ∈ Ep3(Fp4)
• . . .

Which means that each pi must be able to define a valid curve, and if this never cycles, we would need to support
this infinite chain of curves.

2.14 Poseidon Hash
Traditionally, SNARKs are defined over somewhat large prime fields, ill-suited for bit-level operation such as XOR.
As such, many modern cryptographic hash functions, particularly SHA3, are not particularly well suited for use in
many SNARK circuits. The Poseidon[Grassi et al. 2019] Hash specification aims to solve this. The specification
defines a cryptographic sponge construction, with the state permutation only consisting of native field operations.
This makes poseidon in SNARKs much more efficient. The cryptographic sponge structure is also particularly well
suited for Fiat-Shamir, as messages from the prover to the verifier can be modelled with sponge absorption and
challenge messages from the verifier to the prover can be modelled with sponge squeezing. Poseidon is still a very
new hash function though, and is not nearly as used and “battle-tested” as SHA3, so using it can pose a potential
security risk compared to SHA3.

3 PCDL: The Polynomial Commitment Scheme
3.1 Outline
The Polynomial Commitment Scheme, PCDL, is based on the Discrete Log assumption, and does not require a
trusted setup. Most of the functions simply works as one would expect for a PCS, but uniquely for this scheme, we
have the function PCDL.SUCCINCTCHECK that allows deferring the expensive part of checking PCS openings until a
later point. This function is what leads to the accumulation scheme, ASDL, which is also based the Discrete Log
assumption. We have five main functions:

• PCDL.SETUP(λ, D)ρ0 → ppPC

The setup routine. Given security parameter λ in unary and a maximum degree bound D:

– Runs ppCM ← CM.SETUP(λ, D + 1),
– Samples H ∈R E(Fq) using the random oracle H ← ρ0(ppCM),
– Finally, outputs ppPC = (ppCM, H).

• PCDL.COMMIT(p : Fd′

q [X], d : N, ω : Option(Fq))→ E(Fq):

Creates a commitment to the coefficients of the polynomial p of degree d′ ≤ d with optional hiding ω, using a
Pedersen commitment.

• PCDL.OPENρ0(p : Fd′

q [X], C : E(Fq), d : N, z : Fq, ω : Option(Fq))→ EvalProof :

Creates a proof π that states: “I know p ∈ Fd′

q [X] with commitment C ∈ E(Fq) s.t. p(z) = v and deg(p) =
d′ ≤ d” where p is private and d, z, v are public.

• PCDL.SUCCINCTCHECKρ0(C : E(Fq), d : N, z : Fq, v : Fq, π : EvalProof)→ Result((Fd
q [X],E(Fq)),⊥):

Cheaply checks that a proof π is correct. It is not a full check however, since an expensive part of the check is
deferred until a later point.
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• PCDL.CHECKρ0(C : E(Fq), d : N, z : Fq, v : Fq, π : EvalProof)→ Result(⊤,⊥):

The full check on π.

The following subsections will describe them in pseudo-code, except for PCDL.SETUP.

3.1.1 PCDL.COMMIT

Algorithm 1 PCDL.COMMIT

Inputs
p : Fd′

q [X] The univariate polynomial that we wish to commit to.
d : N A degree bound for p.
ω : Option(Fq) Optional hiding factor for the commitment.

Output
C : E(Fq) The Pedersen commitment to the coefficients of polynomial p.

Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Let p(coeffs) be the coefficient vector for p.
2: Output C := CM.COMMIT(G, p(coeffs), ω).

PCDL.COMMIT is rather simple, we just take the coefficients of the polynomial and commit to them using a Pedersen
commitment.
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3.1.2 PCDL.OPEN

Algorithm 2 PCDL.OPENρ0

Inputs
p : Fd′

q [X] The univariate polynomial that we wish to open for.
C : E(Fq) A commitment to the coefficients of p.
d : N A degree bound for p.
z : Fq The element that z will be evaluated on v = p(z).
ω : Option(Fq) Optional hiding factor for C. Must be included if C has hiding!

Output
EvalProof Proof of: "I know p ∈ Fd′

q [X] with commitment C s.t. p(z) = v".
Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Let n = d + 1
2: Compute v = p(z) and let n = d + 1.
3: Sample a random polynomial p̄ ∈R F≤d

q [X] such that p̄(z) = 0.
4: Sample corresponding commitment randomness ω̄ ∈R Fq.
5: Compute a hiding commitment to p̄: C̄ ← PCDL.COMMIT(p̄, d, ω̄) ∈ E(Fq).
6: Compute the challenge α := ρ0(C, z, v, C̄) ∈ Fq.
7: Compute commitment randomness ω′ := ω + αω̄ ∈ Fq.
8: Compute the polynomial p′ := p + αp̄ =

∑
i=0 ciXi ∈ F≤d

q [X].
9: Compute a non-hiding commitment to p′: C ′ := C + αC̄ − ω′S ∈ E(Fq).

10: Compute the 0-th challenge field element ξ0 := ρ0(C ′, z, v) ∈ Fq, then H ′ := ξ0H ∈ E(Fq).
11: Initialize the vectors (c0 is defined to be coefficient vector of p′):

c0 := (c0, c1, . . . , cd) ∈ F n
q

z0 := (1, z1, . . . , zd) ∈ F n
q

G0 := (G0, G1, . . . , Gd) ∈ E(Fq)n

12: for i ∈ [lg(n)] do
13: Compute Li := CM.COMMIT(l(Gi−1) ++ H ′, r(ci−1) ++ ⟨r(ci−1), l(zi−1)⟩, ⊥)
14: Compute Ri := CM.COMMIT(r(Gi−1) ++ H ′, l(ci−1) ++ ⟨l(ci−1), r(zi−1)⟩, ⊥)
15: Generate the i-th challenge ξi := ρ0(ξi−1, Li, Ri) ∈ Fq.
16: Compress values for the next round:

Gi := l(Gi−1) + ξi · r(Gi−1)
ci := l(ci−1) + ξ−1

i · r(ci−1)
zi := l(zi−1) + ξi · r(zi−1)

17: end for
18: Finally output the evaluation proof π := (L, R, U := G(0), c := c(0), C̄, ω′)

Where l(x), r(x) returns the respectively left and right half of the vector given.

The PCDL.OPEN algorithm mostly follows the IPA algorithm from Bulletproofs. Except, in this case we are trying
to prove we know polynomial p s.t. p(z) = v = ⟨c0, z0⟩. So because z is public, we can get away with omitting the
generators, (H), for b which we would otherwise need in the Bulletproofs IPA. For efficiency we also send along the
curve point U = G(0), which the original IPA does not do. The PCDL.SUCCINCTCHECK uses U to make its check
and PCDL.CHECK verifies the correctness of U .
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3.1.3 PCDL.SUCCINCTCHECK

Algorithm 3 PCDL.SUCCINCTCHECKρ0

Inputs
C : E(Fq) A commitment to the coefficients of p.
d : N A degree bound on p.
z : Fq The element that p is evaluated on.
v : Fq The claimed element v = p(z).
π : EvalProof The evaluation proof produced by PCDL.OPEN.

Output
Result((Fd

q [X],E(Fq)),⊥) The algorithm will either succeed and output (h : Fd
q [X], U : E(Fq)) if π is

a valid proof and otherwise fail (⊥).
Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Parse π as (L, R, U := G(0), c := c(0), C̄, ω′) and let n = d + 1.
2: Compute the challenge α := ρ0(C, z, v, C̄) ∈ Fq.
3: Compute the non-hiding commitment C ′ := C + αC̄ − ω′S ∈ E(Fq).
4: Compute the 0-th challenge: ξ0 := ρ0(C ′, z, v), and set H ′ := ξ0H ∈ E(Fq).
5: Compute the group element C0 := C ′ + vH ′ ∈ E(Fq).
6: for i ∈ [lg(n)] do
7: Generate the i-th challenge: ξi := ρ0(ξi−1, Li, Ri) ∈ Fq.
8: Compute the i-th commitment: Ci := ξ−1

i Li + Ci−1 + ξiRi ∈ E(Fq).
9: end for

10: Define the univariate polynomial h(X) :=
∏lg(n)−1

i=0 (1 + ξlg(n)−iX
2i) ∈ Fq[X].

11: Compute the evaluation v′ := c · h(z) ∈ Fq.
12: Check that Clg(n)

?= cU + v′H ′

13: Output (h(X), U).

The PCDL.SUCCINCTCHECK algorithm performs the same check as in the Bulletproofs protocol. With the only
difference being that instead of calculating G(0) itself, it trusts that the verifier sent the correct U = G(0) in the
prover protocol, and defers the verification of this claim to PCDL.CHECK. Notice also the “magic” polynomial h(X),
which has a degree d, but can be evaluated in lg(d) time.

3.1.4 PCDL.CHECK

Algorithm 4 PCDL.CHECKρ0

Inputs
C : E(Fq) A commitment to the coefficients of p.
d : N A degree bound on p
z : Fq The element that p is evaluated on.
v : Fq The claimed element v = p(z).
π : EvalProof The evaluation proof produced by PCDL.OPEN

Output
Result(⊤,⊥) The algorithm will either succeed (⊤) if π is a valid proof and otherwise

fail (⊥).
Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Check that PCDL.SUCCINCTCHECK(C, d, z, v, π) accepts and outputs (h, U).
2: Check that U

?= CM.COMMIT(G, h(coeffs),⊥), where h(coeffs) is the coefficient vector of the polynomial h.

Since PCDL.SUCCINCTCHECK handles the verification of the IPA given that U = G(0), we run PCDL.SUCCINCTCHECK,
then check that U

?= (G(0) = CM.COMMIT(G, h(coeffs),⊥) = ⟨G, h(coeffs)⟩).
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3.2 Completeness

Check 1 (Clg(n)
?= cU + v′H ′) in PCDL.SUCCINCTCHECK:

Let’s start by looking at Clg(n). The verifier computes Clg(n) as:

C0 = C ′ + vH ′ = C + vH ′

Clg(n) = C0 +
lg(n)−1∑

i=0
ξ−1

i+1Li + ξi+1Ri

Given that the prover is honest, the following invariant should hold:

Ci+1 = ⟨ci+1, Gi+1⟩+ ⟨ci+1, zi+1⟩H ′

= ⟨l(ci) + ξ−1
i+1r(ci), l(Gi) + ξi+1r(Gi)⟩+ ⟨l(ci) + ξ−1

i+1r(ci), l(zi) + ξi+1r(zi)⟩H ′

= ⟨l(ci), l(Gi)⟩+ ξi+1⟨l(ci)), r(Gi⟩+ ξ−1
i+1⟨r(ci), l(Gi)⟩+ ⟨r(ci), r(Gi)⟩

+ (⟨l(ci), l(zi)⟩+ ξi+1⟨l(ci), r(zi)⟩+ ξ−1
i+1⟨r(ci), l(zi)⟩+ ⟨r(ci), l(zi)⟩)H ′

If we group these terms:

Ci+1 = ⟨l(ci), l(zi)⟩ + ⟨r(ci), r(Gi)⟩ + ξi+1⟨l(ci), r(Gi)⟩ + ξ−1
i+1⟨r(ci), l(Gi)⟩

+ (⟨l(ci), l(zi)⟩ + ⟨r(ci), r(zi)⟩)H ′ + ξi+1⟨l(ci), r(zi)⟩H ′ + ξ−1
i+1⟨r(ci), l(zi)⟩H ′

= Ci + ξi+1Ri + ξ−1
i+1Li

Where:
Li = ⟨r(ci), l(Gi)⟩+ ⟨r(ci), l(zi)⟩H ′

Ri = ⟨l(ci), r(Gi)⟩+ ⟨l(ci), r(zi)⟩H ′

We see why L, R is defined the way they are. They help the verifier check that the original relation hold, by showing
it for the compressed form Ci+1. L, R is just the minimal information needed to communicate this fact.

This leaves us with the following vectors (notice the slight difference in length):

L = (L1, . . . , Llg(n))
R = (R1, . . . , Rlg(n))
C = (C0, . . . , Clg(n))
ξ = (ξ0, . . . , ξlg(n))

This means an honest prover will indeed produce L, R s.t. Clg(n) = C0 +
∑lg(n)−1

i=0 ξ−1
i+1Li + ξi+1Ri

Let’s finally look at the left-hand side of the verifying check:

Clg(n) = C0 +
lg(n)−1∑

i=0
ξ−1

i+1Li + ξi+1Ri

The original definition of Ci:
Clg(n) = ⟨clg(n), Glg(n)⟩+ ⟨clg(n), zlg(n)⟩H ′

Vectors have length one, so we use the single elements c(0), G(0), c(0), z(0) of the vectors:

Clg(n) = c(0)G(0) + c(0)z(0)H ′

The verifier has c(0) = c, G(0) = U from π ∈ EvalProof :

Clg(n) = cU + cz(0)H ′

Then, by construction of h(X) ∈ Fd
q [X]:

Clg(n) = cU + ch(z)H ′
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Finally we use the definition of v′:
Clg(n) = cU + v′H ′

Which corresponds exactly to the check that the verifier makes.

Check 2 (U ?= CM.COMMIT(G, h(coeffs),⊥)) in PCDL.CHECK:

The honest prover will define U = G(0) as promised and the right-hand side will also become U = G(0) by the
construction of h(X).

3.3 Knowledge Soundness
This subsection will not contain a full knowledge soundness proof, but it will be briefly discussed that the non-zero-
knowledge version of PCDL should be knowledge sound. The knowledge soundness property of PCDL states:

Pr


PC.CHECKρ(C, d, z, v, π) = 1

⇓
C = PC.COMMITρ(p, d, ω)
v = p(z), deg(p) ≤ d ≤ D

∣∣∣∣∣∣∣∣
ρ← U(λ)

ppPC ← PC.SETUPρ(1λ, D)
(C, d, z, v, π)← Aρ(ppPC)

(p, ω)← Eρ(ppPC)

 ≥ 1− negl(λ).

So, we need to show that:

1. C = PC.COMMITρ(p, d, ω)
2. v = p(z)
3. deg(p) ≤ d ≤ D

The knowledge extractability of PCDL is almost identical to the IPA from bulletproofs[Bünz et al. 2017], so we
assume that we can use the same extractor3, with only minor modifications. The IPA extractor extracts a, b ∈ Fn

q

s.t:
P = ⟨G, a⟩+ ⟨H, b⟩ ∧ v = ⟨c, z⟩

Running the extractor for PCDL should yield:

P = ⟨G, c⟩+ ⟨G, z⟩ ∧ v = ⟨c, z⟩

We should be able to remove the extraction of z since it’s public:

C = ⟨G, c⟩ ∧ v = ⟨c, z⟩

1. C = ⟨G, c⟩ = PC.COMMIT(c, G,⊥) = PC.COMMITρ(p, d,⊥), ω = ⊥ since we don’t consider zero-knowledge.
2. v = ⟨c, z⟩ = ⟨p(coeffs), z⟩ = p(z) by definition of p.
3. deg(p) ≤ d ≤ D. The first bound holds since the vector committed to is known to have length n = d + 1, the

second bound holds trivially, as it’s checked by PCDL.CHECK

The authors, of the paper followed[Bünz et al. 2020], note that the soundness technically breaks down when
turning the IPA into a non-interactive protocol (which is the case for PCDL), and that transforming the IPA into a
non-interactive protocol such that the knowledge extractor does not break down is an open problem:

Security of the resulting non-interactive argument. It is known from folklore that applying the
Fiat–Shamir transformation to a public-coin k-round interactive argument of knowledge with negligible
soundness error yields a non-interactive argument of knowledge in the random-oracle model where the
extractor E runs in time exponential in k. In more detail, to extract from an adversary that makes
t queries to the random oracle, E runs in time tO(k). In our setting, the inner-product argument has
k = O(log d) rounds, which means that if we apply this folklore result, we would obtain an extractor
that runs in superpolynomial (but sub-exponential) time tO(log d) = 2O(log(λ)2). It remains an interesting
open problem to construct an extractor that runs in polynomial time.

This has since been solved in a 2023 paper[Attema et al. 2023]. The abstract of the paper describes:
3Admittedly, this assumption is not a very solid one if the purpose was to create a proper knowledge soundness proof, but as the

section is more-so devoted to give a justification for why PCDL ought to be sound, it will do. In fact, the authors of the accumulation
scheme paper[Bünz et al. 2020], use a similar argument more formally by stating (without direct proof!), that the PCDL protocol is a
special case of the IPA presented in another paper[Bünz et al. 2019] by mostly the same authors.
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Unfortunately, the security loss for a (2µ + 1)-move protocol is, in general, approximately Qµ, where Q is
the number of oracle queries performed by the attacker. In general, this is the best one can hope for, as
it is easy to see that this loss applies to the µ-fold sequential repetition of Σ-protocols, . . . , we show that
for (k1, . . . , kµ)-special-sound protocols (which cover a broad class of use cases), the knowledge error
degrades linearly in Q, instead of Qµ.

The IPA is exactly such a (k1, . . . , kµ)-special-sound protocol, they even directly state that this result applies to
bulletproofs. As such we get a knowledge error that degrades linearly, instead of superpolynomially, in number of
queries, t, that the adversary makes to the random oracle. Thus, the extractor runs in the required polynomial time
(O(t) = O(poly(λ))).

3.4 Efficiency
Given two operations f(x), g(x) where f(x) is more expensive than g(x), we only consider f(x), since O(f(n)+g(n)) =
O(f(n)). For all the algorithms, the most expensive operations will be scalar multiplications. We also don’t bother
counting constant operations, that does not scale with the input. Also note that:

O

lg(n)∑
i=2

n

i2

 = O

n

lg(n)∑
i=2

1
i2

 = O(n · c) = O(n)

Remember that in the below contexts n = d + 1

• PCDL.COMMIT: n = O(d) scalar multiplications and n = O(d) point additions.
• PCDL.OPEN:

– Step 1: 1 polynomial evaluation, i.e. n = O(d) field multiplications.
– Step 13 & 14: Both commit lg(n) times, i.e. 2(

∑lg(n)
i=2 (n + 1)/i) = O(2n) scalar multiplications. The sum

appears since we halve the vector length each loop iteration.
– Step 16: lg(n) vector dot products, i.e.

∑lg(n)
i=2 n/i = O(n) scalar multiplications.

In total, O(3d) = O(d) scalar multiplications.
• PCDL.SUCCINCTCHECK:

– Step 7: lg(n) hashes.
– Step 8: 3 lg(n) point additions and 2 lg(n) scalar multiplications.
– step 11: The evaluation of h(X) which uses O(lg(n)) field additions.

In total, O(2 lg(n)) = O(lg(d)) scalar multiplications.
• PCDL.CHECK:

– Step 1: Running PCDL.SUCCINCTCHECK takes O(2 lg(d)) scalar multiplications.
– Step 2: Running CM.COMMIT(G, h(coeffs),⊥) takes O(d) scalar multiplications.

Since step two dominates, we have O(d) scalar multiplications.

So PCDL.OPEN, PCDL.CHECK and PCDL.COMMIT is linear and, importantly, PCDL.SUCCINCTCHECK is sub-linear.

Sidenote: The runtime of h(X)

Recall the structure of h(X):

h(X) :=
lg(n)−1∏

i=0
(1 + ξlg(n)−iX

2i

) ∈ Fq[X]

First note that
(∏lg(n)−1

i=0 a
)

leads to lg(n) factors. Calculating X2i can be computed as:

X20
, X21

= (X20
)2, X22

= (X21
)2, . . .

So that part of the evaluation boils down to the cost of squaring in the field. We therefore have lg(n)
squarings (from X2i), and lg(n) field multiplications from ξlg(n)−i · X2i . Each squaring can naively
be modelled as a field multiplication (x2 = x · x). We therefore end up with 2 lg(n) = O(lg(n)) field
multiplications and lg(n) field additions. The field additions are ignored as the multiplications dominate.

Thus, the evaluation of h(X) requires O(lg(n)) field multiplications, which dominate the runtime.
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4 ASDL: The Accumulation Scheme
4.1 Outline
The ASDL accumulation scheme is an accumulation scheme for accumulating polynomial commitments. This means
that the corresponding predicate, ΦAS, that we accumulate for, represents the checking of polynomial commitment
openings, ΦAS(qi) = PCDL.CHECK(qi). The instances are assumed to have the same degree bounds. A slight
deviation from the general AS specification, is that that the algorithms don’t take the old accumulator acci−1
as input, instead, since it has the same form as instances ((Cacc, dacc, zacc, vacc), πV ), it will be prepended to the
instance list q. We have six main functions:

• ASDL.SETUP(1λ, D)→ ppAS

Outputs ppAS = PCDL.SETUP(1λ, D).

• ASDL.COMMONSUBROUTINE(q : Instancem, πV : AccHiding)→ Result((E(Fq),N,Fq,Fd
q [X]),⊥)

ASDL.COMMONSUBROUTINE will either succeed if the instances have consistent degree and hiding parameters
and will otherwise fail. It accumulates all previous instances into a new polynomial h(X), and is run
by both ASDL.PROVER and ASDL.VERIFIER in order to ensure that the accumulator, generated from h(X)
correctly accumulates the instances. It returns (C̄, d, z, h(X)) representing the information needed to create
the polynomial commitment represented by acci.

• ASDL.PROVER(q : Instancem)→ Result(Acc,⊥):

Accumulates the instances q, and an optional previous accumulator acci−1, into a new accumulator acci. If
there is a previous accumulator acci−1 then it is converted into an instance, since it has the same form, and
prepended to q, before calling the prover.

• ASDL.VERIFIER(q : Instancem, acci : Acc)→ Result(⊤,⊥):

Verifies that the instances q (as with ASDL.PROVER, including a possible acci−1) was correctly accumulated
into the new accumulator acci.

• ASDL.DECIDER(acci : Acc)→ Result(⊤,⊥):

Checks the validity of the given accumulator acci along with all previous accumulators that was accumulated
into acci.

This means that accumulating m instances, q = [qi]m, should yield acci, using the ASDL.PROVER(q). If the verifier
accepts ASDL.VERIFIER(q, acci) = ⊤, and ASDL.DECIDER accepts the accumulator (ASDL.DECIDER(acci) = ⊤),
then all the instances, q, will be valid, by the soundness property of the accumulation scheme. This is proved for
ASDL in the soundness section. Note that this also works recursively, since qacci−1 ∈ q is also proven valid by the
decider.

The following subsections will describe the functions in pseudo-code, except ASDL.SETUP.
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4.1.1 ASDL.COMMONSUBROUTINE

Algorithm 5 ASDL.COMMONSUBROUTINE

Inputs
q : Instancem New instances and accumulators to be accumulated.
πV : AccHiding Necessary parameters if hiding is desired.

Output
Result((E(Fq),N,Fq,Fd

q [X]),⊥) The algorithm will either succeed (E(Fq),N,Fq,Fd
q [X]) if the instances has

consistent degree and hiding parameters and will otherwise fail (⊥).
Require: (D + 1) = 2k, where k ∈ N

1: Parse d from q1.
2: Parse πV as (h0, U0, ω), where h0(X) = aX + b ∈ F1

q[X], U0 ∈ E(Fq) and ω ∈ Fq

3: Check that U0 is a deterministic commitment to h0: U0 = PCDL.COMMIT(h, d,⊥).
4: for j ∈ [0, m] do
5: Parse qj as a tuple ((Cj , dj , zj , vj), πj).
6: Compute (hj(X), Uj) := PCDL.SUCCINCTCHECKρ0(Cj , dj , zj , vj , πj).
7: Check that dj

?= d
8: end for
9: Compute the challenge α := ρ1(h, U) ∈ Fq

10: Let the polynomial h(X) := h0 +
∑m

j=1 αjhj(X) ∈ Fq[X]
11: Compute the accumulated commitment C := U0 +

∑m
j=1 αjUj

12: Compute the challenge z := ρ1(C, h(X)) ∈ Fq.
13: Randomize C: C̄ := C + ωS ∈ E(Fq).
14: Output (C̄, D, z, h(X)).

The ASDL.COMMONSUBROUTINE does most of the work of the ASDL accumulation scheme. It takes the given
instances and runs the PCDL.SUCCINCTCHECK on them to acquire [(hj(X), Uj)]mi=0 for each of them. It then
creates a linear combination of hj(X) using a challenge point α and computes the claimed commitment for this
polynomial C =

∑m
j=1 αjUj , possibly along with hiding information. This routine is run by both ASDL.PROVER and

ASDL.VERIFIER in order to ensure that the accumulator, generated from h(X) correctly accumulates the instances.
To see the intuition behind why this works, refer to the note in the ASDL.DECIDER section.

4.1.2 ASDL.PROVER

Algorithm 6 ASDL.PROVER

Inputs
q : Instancem New instances and accumulators to be accumulated.

Output
Result(Acc,⊥) The algorithm will either succeed ((C̄, d, z, v, π), πV ) ∈ Acc) if the instances

has consistent degree and hiding parameters and otherwise fail (⊥).
Require: ∀(_, di, _, _, _) ∈ q,∀(_, dj , _, _, _) ∈ q : di = dj ∧ di ≤ D
Require: (di + 1) = 2k, where k ∈ N

1: Sample a random linear polynomial h0(X) ∈R F ≤d
q [X]

2: Then compute a deterministic commitment to h0(X): U0 := PCDL.COMMIT(h0, d,⊥)
3: Sample commitment randomness ω ∈R Fq, and set πV := (h0, U0, ω).
4: Then, compute the tuple (C̄, d, z, h(X)) := ASDL.COMMONSUBROUTINE(q, πV ).
5: Compute the evaluation v := h(z) ∈ Fq.
6: Generate the evaluation proof π := PCDL.OPEN(h(X), C̄, d, z, ω).
7: Finally, output the accumulator acci = ((C̄, d, z, v, π), πV ).

Simply accumulates the the instances, q, into new accumulator acci, using ASDL.COMMONSUBROUTINE.
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4.1.3 ASDL.VERIFIER

Algorithm 7 ASDL.VERIFIER

Inputs
q : Instancem New instances and possible accumulator to be accumulated.
acci : Acc The accumulator that accumulates q. Not the previous accumulator acci−1.

Output
Result(⊤,⊥) The algorithm will either succeed (⊤) if acci correctly accumulates q and

otherwise fail (⊥).
Require: (D + 1) = 2k, where k ∈ N

1: Parse acci as ((C̄, d, z, v, _), πV )
2: The accumulation verifier computes (C̄ ′, d′, z′, h(X)) := ASDL.COMMONSUBROUTINE(q, πV )
3: Then checks that C̄ ′ ?= C̄, d′ ?= d, z′ ?= z, and h(z) ?= v.

The verifier also runs ASDL.COMMONSUBROUTINE, therefore verifying that acci correctly accumulates q, which
means:

• C̄ = C + ωS =
∑m

j=1 αjUj + ωS
• ∀(_, dj , _, _, _) ∈ q : dj = d
• z = ρ1(C, h(X))
• v = h(z)
• h(X) =

∑m
j=0 αjhj(X)

• α := ρ1(h, U)

4.1.4 ASDL.DECIDER

Algorithm 8 ASDL.DECIDER

Inputs
acci : Acc The accumulator.

Output
Result(⊤,⊥) The algorithm will either succeed (⊤) if the accumulator has correctly

accumulated all previous instances and will otherwise fail (⊥).
Require: acci.d ≤ D
Require: (acci.d + 1) = 2k, where k ∈ N

1: Parse acci as ((C̄, d, z, v, π), _)
2: Check ⊤ ?= PCDL.CHECK(C̄, d, z, v, π)

The decider fully checks the accumulator acci, this verifies each previous accumulator meaning that:

∀i ∈ [n],∀j ∈ [m] :
ASDL.VERIFIER((TOINSTANCE(acci−1) ++ qi−1), acci) ∧ASDL.DECIDER(accn) =⇒

ΦAS(q(i)
j ) = PCDL.CHECK(q(i)

j ) = ⊤

The sidenote below gives an intuition why this is the case.

Sidenote: Why does checking acci check all previous instances and previous accumulators?

The ASDL.PROVER runs the ASDL.COMMONSUBROUTINE that creates an accumulated polynomial h from
[hj(X)]m that is in turn created for each instance qj ∈ qi by PCDL.SUCCINCTCHECK:

hj(X) :=
lg(n)∏
i=0

(1 + ξlg(n)−i ·X2i

) ∈ Fq[X]

We don’t mention the previous accumulator acci−1 explicitly as it’s treated as an instance in the
protocol. We also only consider the case where the protocol does not have zero knowledge, meaning
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that we omit the blue parts of the protocol. The ASDL.VERIFIER shows that C is a commitment
to h(X) in the sense that it’s a linear combination of all hj(X)’s from the previous instances, by
running the same ASDL.COMMONSUBROUTINE algorithm as the prover to get the same output. Note
that the ASDL.VERIFIER does not guarantee that C is a valid commitment to h(X) in the sense that
C = PCDL.COMMIT(h, d,⊥), that’s the ASDL.DECIDER’s job. Since ASDL.VERIFIER does not verify
that each Uj is valid, and therefore that C = PCDL.COMMIT(h, d,⊥), we now wish to argue that
ASDL.DECIDER verifies this for all the instances.

Showing that C = PCDL.COMMIT(h, d,⊥):

The ASDL.PROVER has a list of instances (q1, . . . , qm) = qi, then runs PCDL.SUCCINCTCHECK on each
of them, getting (U1, . . . , Um) and (h1(X), . . . , hm(X)). For each element Uj in the vector U ∈ E(Fq)m

and each element hj(X) in the vector h ∈ (F≤d
q [X])m, the ASDL.PROVER defines:

h(X) :=
m∑

j=1
αjhj(X)

C :=
m∑

j=1
αjUj

Since we know from the ASDL.VERIFIER:

1. PCDL.SUCCINCTCHECK(qj) = ⊤

2. Cacci =
∑m

j=1 αjUj

3. zacci
= ρ1(C, h(X))

4. hacci
(X) =

∑m
j=0 αjhj(X)

5. α := ρ1(h, U)

Which implies that ΦAS(qj) = ⊤ if U = G(0). We then argue that when the ASDL.DECIDER checks
that C = PCDL.COMMIT(h(X), d,⊥), then that implies that each Uj is a valid commitment to hj(X),
Uj = PCDL.COMMIT(hj(X), d,⊥) = ⟨G, hj⟩, thereby performing the second check of PCDL.CHECK, on
all qj instances at once. We know that:

1. PCDL.CHECK tells us that Cacci
=

∑m
j=1 αjUj except with negligible probability, since,

2. The binding property of CM states that it’s hard to find a different C ′, s.t., C = C ′ but hacci(X) ̸=
h′(X). Which means that hacci

(X) = h′(X).

3. Define Bj = ⟨G, hj
(coeffs)⟩. If ∃j ∈ [m] Bj ≠ Uj then Uj is not a valid commitment to hj(X) and∑m

j=1 αjBj ̸=
∑m

j=1 αjUj . As such Cacci
will not be a valid commitment to hacci

(X). Unless,

4. α := ρ1(h, U) or z = ρ1(C, h(X)) is constructed in a malicious way, which is hard, since they’re
from the random oracle.

<!– TODO: This is wrong –>

To sum up, this means that running the ASDL.DECIDER corresponds to checking all Uj ’s.

What about checking the previous instances, qi−1, accumulated into the previous accumu-
lator, acci−1? The accumulator for qi−1 is represented by an instance acci−1 = (C =
PCDL.COMMIT(hacci−1 , d,⊥), d, z, v = hacci−1(z), π), which, as mentioned, behaves like all other
instances in the protocol and represents a PCS opening to hacci−1(X). Since acci−1 is represented as an
instance, and we showed that as long as each instance is checked by AS.VERIFIER (which acci−1 also is),
running PCDL.CHECK(acci) on the corresponding accumulation polynomial hacci

(X) is equivalent to
performing the second check Uj = PCDL.COMMIT(hj(X), d,⊥) on all the hj(X) that hacci(X) consists of.
Intuitively, if any of the previous accumulators were invalid, then their commitment will be invalid, and
the next accumulator will also be invalid. That is, the error will propagate. Therefore, we will also check
the previous set of instances qi−1, and by induction, all accumulated instances q and accumulators acc.
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4.2 Completeness
ASDL.VERIFIER runs the same algorithm (ASDL.COMMONSUBROUTINE) with the same inputs and, given that
ASDL.PROVER is honest, will therefore get the same outputs, these outputs are checked to be equal to the ones
received from the prover. Since these were generated honestly by the prover, also using ASDL.COMMONSUBROUTINE,
the ASDL.VERIFIER will accept with probability 1, returning ⊤. Intuitively, this also makes sense. It’s the job of the
verifier to verify that each instance is accumulated correctly into the accumulator. This verifier does the same work
as the prover and checks that the output matches.

As for the ASDL.DECIDER, it just runs PCDL.CHECK on the provided accumulator, which represents a evaluation
proof i.e. an instance. This check will always pass, as the prover constructed it honestly.

4.3 Soundness
In order to prove soundness, we first need a helper lemma:

Lemma: Zero-Finding Game:

Let CM = (CM.SETUP, CM.COMMIT) be a perfectly binding commitment scheme. Fix a maximum degree D ∈ N
and a random oracle ρ that takes commitments from CM to Fpp. Then for every family of functions {fpp}pp and
fields {Fpp}pp where:

• fpp ∈M→ F ≤D
pp [X]

• F ∈ N→ N
• |Fpp| ≥ F (λ)

That is, for all functions, fpp, that takes a message,M as input and outputs a maximum D-degree polynomial. Also,
usually |Fpp| ≈ F (λ). For every message format L and computationally unbounded t-query oracle algorithm A, the
following holds:

Pr


p ̸= 0
∧

p(z) = 0

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppCM ← CM.SETUP(1λ, L)

(m, ω)← Aρ(ppCM)
C ← CM.COMMIT(m, ω)

z ∈ Fpp ← ρ(C)
p := fpp(m)

 ≤
√

D(t + 1)
F (λ)

Intuitively, the above lemma states that for any non-zero polynomial p, that you can create using the commitment
C, it will be highly improbable that a random evaluation point z be a root of the polynomial p, p(z) = 0. For
reference, this is not too unlike the Schwartz-Zippel Lemma.

Proof:

We construct a reduction proof, showing that if an adversary A that wins with probability δ in the above game,
then we construct an adversary B which breaks the binding of the commitment scheme with probability at least:

δ2

t + 1 −
D

F (λ)
Thus, leading to a contradiction, since CM is perfectly binding. Note, that we may assume that A always queries
C ← CM.COMMIT(m, ω) for its output (m, ω), by increasing the query bound from t to t + 1.

The Adversary B(ppCM)
1: Run (m, ω)← Aρ(ppCM), simulating its queries to ρ.
2: Get C ← CM.COMMIT(m, ω).
3: Rewind A to the query ρ(C) and run to the end, drawing fresh randomness for this and subsequent oracle

queries, to obtain (p′, ω′).
4: Output ((m, ω), (m′, ω′)).

Each (m, ω)-pair represents a message where p ≠ 0 ∧ p(z) = 0 for z = ρ(CM.COMMIT(m, ω)) and p = fpp(m) with
probability δ
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Let:
C ′ := CM.COMMIT(p′, ω′)
z := ρ(C)

z′ := ρ(C ′)
p := fpp(m)

p′ := fpp(m′)

By the Local Forking Lemma[Bellare et al. 2019], the probability that p(z) = p′(z′) = 0 and C = C ′ is at least δ2

t+1 .
Let’s call this event E:

E := (p(z) = p′(z′) = 0 ∧ C = C ′)
Then, by the triangle argument:

Pr[E] ≤ Pr[E ∧ (p = p′)] + Pr[E ∧ (p ̸= p′)]

And, by Schwartz-Zippel:
Pr[E ∧ (p = p′)] ≤ D

|Fpp|
=⇒

≤ D

F (λ)
Thus, the probability that B breaks binding is:

Pr[E ∧ (p = p′)] + Pr[E ∧ (p ̸= p′)] ≥ Pr[E]
Pr[E ∧ (p ̸= p′)] ≥ Pr[E]− Pr[E ∧ (p = p′)]

Pr[E ∧ (p ̸= p′)] ≥ δ2

t + 1 −
D

F (λ)

Yielding us the desired probability bound. Isolating δ will give us the probability bound for the zero-finding game:

0 = δ2

t + 1 −
D

F (λ)
δ2

t + 1 = D

F (λ)

δ2 = D(t + 1)
F (λ)

δ =

√
D(t + 1)

F (λ)

□

For the above Lemma to hold, the algorithms of CM must not have access to the random oracle ρ used to generate
the challenge point z, but CM may use other oracles. The lemma still holds even when A has access to the additional
oracles. This is a concrete reason why domain separation, as mentioned in the Fiat-Shamir subsection, is important.

With this lemma, we wish to show that given an adversary A, that breaks the soundness property of ASDL, we
can create a reduction proof that then breaks the above zero-finding game. We fix A, D = poly(λ) from the AS
soundness definition:

Pr


ASDL.VERIFIERρ1((qacci−1 ++ q), acci) = ⊤,

ASDL.DECIDERρ1(acci) = ⊤
∧

∃i ∈ [n] : ΦAS(qi) = ⊥

ρ0 ← U(λ), ρ1 ← U(λ),
ppPC ← PCDL.SETUPρ0(1λ, D),
ppAS ← ASDL.SETUPρ1(1λ, ppPC),

(q, acci−1, acci)← Aρ1(ppAS, ppPC)
qacci−1 ← TOINSTANCE(acci−1)

 ≤ negl(λ)

We call the probability that the adversary A wins the above game δ. We bound δ by constructing two adversaries,
B1,B2, for the zero-finding game. Assuming:
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• Pr[B1 wins ∨ B2wins] = δ − negl(λ)
• Pr[B1 wins ∨ B2wins] = 0

These assumptions will be proved after defining the adversaries concretely. So, we claim that the probability that
either of the adversaries wins is δ − negl(λ) and that both of the adversaries cannot win the game at the same time.
With these assumptions, we can bound δ:

Pr[B1 wins ∨ B2 wins] = Pr[B1 wins] + Pr[B2 wins]− Pr[B1 wins ∧ B2 wins]
Pr[B1 wins ∨ B2 wins] = Pr[B1 wins] + Pr[B2 wins]− 0

δ − negl(λ) ≤

√
D(t + 1)

F (λ) +

√
D(t + 1)

F (λ)

δ − negl(λ) ≤ 2 ·

√
D(t + 1)
|Fq|

δ ≤ 2 ·

√
D(t + 1)
|Fq|

+ negl(λ)

Meaning that δ is negligible, since q = |Fq| is superpolynomial in λ. We define two perfectly binding commitment
schemes to be used for the zero-finding game:

• CM1:
– CM1.SETUPρ0(1λ, D) := ppPC ← PCDL.SETUPρ0(1λ, D)
– CM1.COMMIT((p(X), h(X)), _) := (C ← PCDL.COMMIT(p(X), d,⊥), h)
– MCM1 := {(p(X), h(X) = αjhj(X))} ∈ P((F≤D

q [X])2)
– zCM1 := ρ1(CM1.COMMIT((p(X), h(X)), _)) = ρ1((C ← PCDL.COMMIT(p(X), d,⊥), h)) = zacc

• CM2:
– CM2.SETUPρ0(1λ, D) := ppPC ← PCDL.SETUPρ0(1λ, D)
– CM2.COMMIT([(hj(X), Uj)]m, _) := [(hj(X), Uj)]m:
– MCM2 := {[(hj(X), Uj)]m} ∈ P((F≤D

q [X]× E(Fq))m)
– zCM2 := ρ1(CM2.COMMIT([(hj(X), Uj)]m, _)) = ρ1([(hj(X), Uj)]m) = α

Note that the CM1, CM2 above are perfectly binding, since they either return a Pedersen commitment, without
binding, or simply return their input. MCM1 consists of pairs of polynomials of a maximum degree D, where
∀j ∈ [m] : h(X) = αjhj(X). MCM2 consists of a list of pairs of a maximum degree D polynomial, hj(X), and Uj is
a group element. Notice that za = zacc and zb = α where zacc and α are from the ASDL protocol.

We define the corresponding functions f
(1)
pp , f

(2)
pp for CM1, CM2 below:

• f
(1)
pp (p(X), h(X) = [hj(X)]m) := a(X) = p(X)−

∑m
j=1 αjhj(X),

• f
(2)
pp (p = [(hj(X), Uj)]m) := b(Z) =

∑m
j=1 ajZj where for each j ∈ [m]:

– Bj ← PCDL.COMMIT(hj , d,⊥)
– Compute bj : bjG = Uj −Bj

We then construct an intermediate adversary, C, against PCDL, using A:

The Adversary Cρ1(ppPC)

1: Parse ppPC to get the security parameter 1λ and set AS public parameters ppAS := 1λ.
2: Compute (q, acci−1, acci)← Aρ1(ppAS).
3: Parse ppPC to get the degree bound D.
4: Output (D, acci = (Cacc, dacc, zacc, vacc), q).

The above adversary also outputs q for convenience, but the knowledge extractor simply ignores this. Running the
knowledge extractor, Eρ1

C , on C, meaning we extract acci, will give us p. Provided that ASDL.DECIDER accepts, the
following will hold with probability (1− negl):

• Cacc is a deterministic commitment to p(X).
• p(zacc) = vacc
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• deg(p) ≤ dacc ≤ D

Let’s denote successful knowledge extraction s.t. the above points holds as EE . Furthermore, the ASDL.DECIDER
(and ASDL.VERIFIER’s) will accept with probability δ, s.t. the following holds:

• ASDL.VERIFIERρ1((qacci−1 ++ q), acci) = ⊤
• ASDL.DECIDERρ1(acci) = ⊤
• ∃i ∈ [n] : ΦAS(qi) = ⊥ =⇒ PCDL.CHECKρ0(Ci, di, zi, vi, πi) = ⊥

Let’s denote this event as ED. We’re interested in the probability Pr[EE ∧ ED]. Using the chain rule we get:

Pr[EE ∧ ED] = Pr[EE | ED] · Pr[EE ]
= δ · (1− negl(λ))
= δ − δ · negl(λ)
= δ − negl(λ)

Now, since ASDL.VERIFIERρ1((qacci−1 ++ q), acci) accepts, then, by construction, all the following holds:

1. For each j ∈ [m], PCDL.SUCCINCTCHECK accepts.
2. Parsing acci = (Cacc, dacc, zacc, vacc) and setting α := ρ1([(hj(X), Uj)]m), we have that:

• zacc = ρ1(Cacc, [hj(X)]m)
• Cacc =

∑m
j=1 αjUj

• vacc =
∑m

j=1 αjhj(z)

Also by construction, this implies that either:

• PCDL.SUCCINCTCHECK rejects, which we showed above is not the case, so therefore,
• The group element Uj is not a commitment to hj(X).

We utilize this fact in the next two adversaries, B1,B2, constructed, to win the zero-finding game for CM1, CM2
respectively, with non-negligible probability:

The Adversary Bρ1
k (ppAS)

1: Compute (D, acci, q)← Cρ1(ppAS).
2: Compute p← Eρ

C(ppAS).
3: For each qj ∈ q : (hj , Uj)← PCDL.SUCCINCTCHECK(qj).
4: Compute α := ρ1([(hj , Uj)]m).
5: if k = 1 then
6: Output ((n, D), (p, h := ([hj ]m)))
7: else if k = 2 then
8: Output ((n, D), ([(hj , Uj)]m))
9: end if

Remember, the goal is to find an evaluation point, s.t. a(X) ̸= 0 ∧ a(za) = 0 for CM1 and b(X) ̸= 0 ∧ b(zb) = 0 for
CM2. We set za = zacc and zb = α. Now, there are then two cases:

1. Cacc ̸=
∑m

j=1 αjBj : This means that for some j ∈ [m], Uj ̸= Bj . Since Cacc is a commitment to p(X),
p(X)−h(X) is not identically zero, but p(zacc) = h(zacc). Thusly, a(X) ̸= 0 and a(zacc) = 0. Because zacc = za

is sampled using the random oracle ρ1, B1 wins the zero-finding game against (CM1, {f (1)
pp }pp).

2. C =
∑n

j=1 αjBj . Which means that for all j ∈ [m], Uj = Bj . Since C =
∑n

j=1 αjUj , α is a root of the
polynomial a(Z), a(α) = 0. Because α is sampled using the random oracle ρ1, B2 wins the zero-finding game
against (CM2, {f (2)

pp }pp).

So, since one of these adversaries always win if EE ∧ ED, the probability that Pr[B1 wins ∨ B2wins] is indeed
δ − negl(λ). And since the above cases are mutually exclusive we also have Pr[B1 wins ∨ B2wins]. Thus, we have
proved that, given the zero-finding game Lemma, the probability that an adversary can break the soundness property
of the ASDL accumulation scheme is negligible.

□
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4.4 Efficiency
• ASDL.COMMONSUBROUTINE:

– Step 6: m calls to PCDL.SUCCINCTCHECK, m · O(2 lg(d)) = O(2m lg(d)) scalar multiplications.
– Step 11: m scalar multiplications.

Step 6 dominates with O(2m lg(d)) = O(m lg(d)) scalar multiplications.
• ASDL.PROVER:

– Step 4: 1 call to ASDL.COMMONSUBROUTINE, O(md) scalar multiplications.
– Step 5: 1 evaluation of h(X), O(lg(d)) scalar multiplications.
– Step 6: 1 call to PCDL.OPEN, O(3d) scalar multiplications.

Step 6 dominates with O(3d) = O(d) scalar multiplications.
• ASDL.VERIFIER:

– Step 2: 1 call to ASDL.COMMONSUBROUTINE, O(2m lg(d)) scalar multiplications.
So O(2m lg(d)) = O(m lg(d)) scalar multiplications.

• ASDL.DECIDER:
– Step 2: 1 call to PCDL.CHECK, with O(d) scalar multiplications.

O(d) scalar multiplications.

So ASDL.PROVER and ASDL.DECIDER are linear and ASDL.DECIDER is sub-linear.

5 IVC-friendly Plonk Scheme
We construct a NARK with support for recursive proofs, heavily inspired by the Z-Cash’s Halo2 and Mina’s
Kimchi proof systems. As with both of these protocols, we instantiate them over a Bulletproofs-style PCS and
corresponding accumulation scheme[Jakobsen 2025]. We have taken liberties to try to simplify the protocol at the
cost of performance, but have taken an effort to ensure we only affect constant-time factors. Meaning that the
following still hold for our protocol:

1. The prover is bounded by O(n lg(n))
2. The verifier time is linear (O(n))
3. The proof size is bounded by O(lg(n))

The below sections will describe this protocol in detail.

5.1 Arguments
We now describe the arguments used in Plonk. We can safely assume that the degree bound of any polynomial is
always much smaller than the size of the field, d≪ |F|.

5.1.1 Vanishing Argument

The checks that the verifier makes in Plonk boils down to checking identities of the following form:

∀s ∈ S : f(s) ?= 0

For some polynomial f(X) ∈ F≤d and some set S ⊂ F. The subset, S, may be much smaller than F as is the case
for Plonk where S is set to be the set of roots of unity (S = H = {ω1, ω2, . . . , ωn}). Since we ultimately model the
above check with challenge scalars, using just S, might not be sound. For this purpose, we can construct the Single
Polynomial Vanishing Argument Protocol:
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Prover(f ∈ F≤d[X]) Verifier

Cf = PC.COMMIT(f(X), d,⊥)

zS(X) =
∏
s∈S

(X − s)

t(X) = f(X)
zS

Ct = PC.COMMIT(t(X), d,⊥) Cf ,Ct−−−−−−−−−−−→ ξ ∈R F

vf = f(ξ) ξ←−−−−−−−−

πf = PC.OPEN(f(X), Cf , d, ξ,⊥)

vt = t(ξ)

πt = PC.OPEN(t(X), Cf , d, ξ,⊥) vf ,πf ,vt,πt−−−−−−−−−−−−−−→ vf
?= vt · zS(ξ)

PC.CHECK(Cf , d, ξ, vf , πf ) ?= ⊤

PC.CHECK(Ct, d, ξ, vt, πt)
?= ⊤

Correctness

Define p(X) = fi(ξ)− t(ξ)zS(ξ). For any ξ ∈ F \ S, the following holds:

p(ξ) = fi(ξ)− t(ξ)zS(ξ)

= fi(ξ)−
(

fi(ξ)
zS(ξ)

)
zS(ξ)

= 0

□

Soundness

The factor theorem states that if f(X) is a univariate polynomial, then x − a is a factor of f(X) if and only if
f(a) = 0. This means zS(X) only divides f(X) if and only if all of s ∈ S : f(s) = 0. The Schwartz-Zippel Lemma
states that evaluating a non-zero polynomial on an input chosen randomly from a large enough set is extremely
unlikely to evaluate to zero. Specifically, it ensures that Pr[p(ξ) = 0 ∧ p(X) ̸= 0] ≤ deg(p(X))

|F| . Clearly ξ ∈R F is
sampled from a large enough set as |F| ≫ d ≥ deg(p(X)) and therefore Pr[p(ξ) = 0 | P ≠ 0] is negligible. Lastly,
the evaluation checked depends on the soundness of the underlying PCS scheme used, but we assume that it has
knowledge soundness and binding. From all this, we conclude that the above vanishing argument is sound.

Extending to multiple f ’s

We can use a linear combination of α to generalize the Single Polynomial Vanishing Argument, creating a
Vanishing Argument Protocol:
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Prover(f ∈ Fk
≤d[X]) Verifier

Cfi
= PC.COMMIT(fi(X), d,⊥) Cf−−−−−−−−−→ α ∈R F

zS(X) =
∏
s∈S

(X − s) α←−−−−−−−−

t(X) =
∑k−1

i=1 αifi(X)
zS

Ct = PC.COMMIT(t(X), d,⊥) Ct−−−−−−−−−→ ξ ∈R F

vfi = fi(ξ) ξ←−−−−−−−−

πfi
= PC.OPEN(fi(X), Cfi

, d, ξ,⊥)

vt = t(ξ)

πt = PC.OPEN(t(X), Cf , d, ξ,⊥) vf ,πf ,vt,πt−−−−−−−−−−−−−−−→
k−1∑
i=0

αivfi = vt · zS(ξ)

∀i ∈ [k] : PC.CHECK(Cfi , d, ξ, vfi , πfi)
?= ⊤

PC.CHECK(Ct, d, ξ, vt, πt)
?= ⊤

You can compress the k + 1 evaluations proofs into a single evaluation proof using the Batched Evaluation Proofs
Protocol.

5.1.2 Batched Evaluation Proofs

If we have m polynomials, f , that all need to evaluate to zero at the same challenge ξ, normally, we could construct
m opening proofs, and verify these. We can, however, use the following protocol to only create the Batched
Evaluation Proofs Protocol:

Prover(f ∈ Fk
≤d[X]) Verifier

Cfi = PC.COMMIT(fi(X), d,⊥) Cf−−−−−−−−−→ α, ξ ∈R F

w(X) =
k−1∑
i=0

αifi(X) α,ξ←−−−−−−−−−

Cw(X) = PC.COMMIT(w(X), d,⊥)

vfi
= fi(ξ)

πw = PC.OPEN(w(X), Cw, d, ξ,⊥) πw,vf−−−−−−−−−−−→ Cw =
k−1∑
i=0

αiCfi

vw =
k−1∑
i=0

αivfi

PC.CHECK(Cw, d, ξ, vw, πw) ?= ⊤

Correctness:

Since:

• Cw =
∑k−1

i=0 αiCfi
= PC.COMMIT(f(X), d,⊥) (Assuming a homomorphic commitment scheme)

• vw =
∑k−1

i=0 αivfi = w(ξ) (By definition of w(X))

The correctness of the protocol is derived from the correctness of the underlying PCS.

Soundness:
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Recall that:

k−1∑
i=0

αifi(ξ) =
k−1∑
i=0

αivi

This can be recontextualized as a polynomial:

p(α) =
k−1∑
i=0

αi(fi(ξ)− vi) = 0

Then from Schwartz-Zippel, we achieve soundness, since the probability that this polynomial evaluates to zero given
that it’s not a zero-polynomial is k

|F| .

5.1.3 Grand Product Argument

Suppose a prover, given polynomials f(X), g(x) wanted to prove that these polynomials when viewed as sets are
equal to each other. This is called multi-set equality, i.e, ∀ω ∈ H : f(X) = g(X). This relation can be modelled
with a grand product:

f ′(X) = f(X) + γ

g′(X) = g(X) + γ∏
i∈[n]

f ′(ωi) =
∏

i∈[n]

g′(ωi)

Completeness is trivial. As for soundness. We can interpret each side of the equality as a polynomial variable in γ:

p(X) =
∏

i∈[n]

f(ωi) + X

q(X) =
∏

i∈[n]

g(ωi) + X

Then by Schwarz-Zippel, if we consider r(X) = p(X)− q(X), if r(γ) = 0 and r(γ) : γ ∈R F then p(X) = q(X). Now,
we just need to prove that p(X) = q(X) =⇒ {a1, . . . , an} = {b1, . . . , bn}.

Consider the roots of p(X) and q(X), starting with p(X):

p(X) =
∏

i∈[n]

f(ωi) + X

This polynomial evaluates to zero only if one of the factors equals f(ωi). The same argument for q(X) can also be
applied:

roots(p(X)) = {−f(ω1), . . . ,−f(ωn)}
= {−a1, . . . ,−an}

roots(q(X)) = {−g(ω1), . . . ,−g(ωn)}
= {−b1, . . . ,−bn}

Since the two polynomials are equal, they must have the same roots. Thus:

roots(p(X)) = roots(q(X)) =⇒
{−a1, . . . ,−an} = {−b1, . . . ,−bn} =⇒
{a1, . . . , an} = {b1, . . . , bn}
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□

We still need to convert
∏

i∈n f ′(ωi) =
∏

i∈n g′(ωi) to a polynomial that can be checked by the verifier. The prover
can create a polynomial, z(X), to check the relation:

z(ω1) = 1

z(ωi) =
∏

1≤j<i

f ′(ωj)
g′(ωj)

The prover needs to convince the verifier that z(X) has the expected form:

z(ωi) =
∏

1≤j<i

f ′(ωj)
g′(ωj)

z(ωi) = z(ωi−1)f ′(ωi−1)
g′(ωi−1)

z(ωi+1) = z(ωi)f ′(ωi)
g′(ωi)

z(ωi+1)g′(ωi) = z(ωi)f ′(ωi)
z(ωi)f ′(ωi) = z(ω · ωi)g′(ωi)

While also proving that z(ω1) = 1. This leads to the following polynomials:

fCC1(X) = l1(X)(z(X)− 1)
fCC2(X) = z(X)f ′(X)− z(ωX)g′(X)

That should be zero for all ω ∈ H, which can be checked using the Vanishing Argument Protocol. Finally, it needs
to be argued that checking these constraints lead to the desired goal of checking whether

∏
ω∈H f ′(ω) ?=

∏
ω∈H g′(ω).

Notice that in the last case, i = n:

z(ωn)f ′(ωn) = z(ωn+1)g′(ω)∏
1≤j<i

f ′(ωj)
g′(ωj) f ′(ωn) = g′(ω)

∏
1≤j<i

f ′(ωj)f ′(ωn)
g′(ωj)g′(ωn) = 1

∏
i∈[n] f ′(ωi)∏
i∈[n] g′(ωi) = 1∏
i∈[n]

f ′(ωi) =
∏

i∈[n]

g′(ωi)

And since, by the Vanishing Argument, fCC1(X) and fCC2(X) holds for all ω ∈ H, it also holds for ωn.

Prover(f, g ∈ F≤d[X]) Verifier

Cf = PC.COMMIT(f(X), d,⊥)

Cg = PC.COMMIT(g(X), d,⊥) Cf ,Cg−−−−−−−−−−−→ α, β ∈R F

z(ω1) = 1

z(ωi) =
∏

1≤j<i

f(ωj) + γ

g(ωj) + γ
←−−−−−−→ ∀h ∈ H : fCC1(h) ?= l1(h)(z(h)− 1)

←−−−−−−→ ∀h ∈ H : fCC2(h) ?= z(h)f ′(h)− z(ωh)g′(h)

32



5.2 Protocol Components
5.2.1 Gate Constraints

Imagine we want to prove that we have a witness for 3x2
1 + 5x2 = 47, meaning we want to show that we know x1, x2

such that the equation equals 47. We can represent that equation as a simple circuit.

x1 x23 5

×
a1 b1

c1

×
a2 b2

c2

×
a3 b3

c3

+
a4 b4

c4

47

2 73 5

× ×

×
4

+
12 35

47

Figure 4: Two ways of viewing the circuit representing 3x2
1 + 5x2 = 47. The left circuit is also instantiated with the

witness x1, x2.

This is a trivial problem, so we deduce that x1 = 2, x2 = 7. From the graphs above, we can construct vectors
representing the wire values of our circuit:

w = [2, 7, 4, 3, 12, 5, 35, 47]
a = [2, 7, 3, 12]
b = [2, 5, 4, 35]
c = [4, 35, 12, 42]

We can then create polynomials a(X), b(X), c(X) corresponding to the left-input wire, the right-input wire and the
output wire respectively:

a(X) = lagrange(a)
b(X) = lagrange(b)
c(X) = lagrange(c)

Now, we can use selector polynomials, ql(X), qr(X), qo(X), qm(X), qc(X), to show that the constructed polynomials
a(X), b(X), c(X) satisfy the circuit relations by proving that a constructed polynomial fGC(X) = 0 at i = [1, 8]:

fGC(X) = a(X)ql(X) + b(X)qr(X) + c(X)qo(X) + a(X)b(X)qm(X) + qc(X)

Where a(X), b(X), c(X) are private and the selector polynomials are public. Notice that we can represent this as a
table:

i a(i) b(i) c(i) ql(i) qr(i) qo(i) qm(i) qc(i)
1 3 0 0 1 0 0 0 -3
2 5 0 0 1 0 0 0 -5
3 47 0 0 1 0 0 0 -47
4 2 2 4 0 0 -1 1 0
5 5 7 35 0 0 -1 1 0
6 4 3 12 0 0 -1 1 0
7 35 12 47 1 1 -1 0 0
8 0 0 0 0 0 0 0 0
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Lagrange interpolation is slow, with a runtime of O(n2), we can instead use FFT to construct our polynomials,
which has a runtime of O(n log(n)). For this, we construct the polynomials over the roots of unity (ω1, ω2, . . . , ω8

where ω is the 8’th root of unity), meaning that our table becomes:

ωi a(ωi) b(ωi) c(ωi) ql(ωi) qr(ωi) qo(ωi) qm(ωi) qc(ωi)
ω1 3 0 0 1 0 0 0 -3
ω2 5 0 0 1 0 0 0 -5
ω3 47 0 0 1 0 0 0 -47
ω4 2 2 4 0 0 -1 1 0
ω5 5 7 35 0 0 -1 1 0
ω6 4 3 12 0 0 -1 1 0
ω7 35 12 47 1 1 -1 0 0
ω8 0 0 0 0 0 0 0 0

Now we wish to prove that:

∀ω ∈ H = {ω1, ..., ω6} : fGC(X) = 0

And for this, we can use the Vanishing Argument Protocol. And in order for the verifier to know that fGC(X) is
constructed honestly, i.e. it respects the public selector polynomials, we can use the Batched Evaluations Proofs
Protocol over each witness polynomial instead of fGC(X). This securely gives the verifier vfGC

= fGC(ξ), va =
a(ξ), vb = b(ξ), vc = c(ξ) and the verifier can then check:

vf = vaql(ξ) + vbqr(ξ) + vcqo(ξ) + vavbqm(ξ) + qc(ξ)

We still need to handle copy constraints, because as can be seen in the table, we need to verify identities between
wires (like a(ω1) = b(ω1)). For this we need Copy Constraints.

5.2.2 Copy Constraints

For example we want to show that a(ω1) = b(ω1), first we concatenate the lists a, b, c:

f = [2, 7, 3, 12] ++ [2, 5, 4, 35] ++ [4, 35, 12, 42] = [2, 7, 3, 12, 2, 5, 4, 35, 4, 35, 12, 42]

Now, we wish to show, that for some permutation σ : Fk → Fk, the list remains unchanged once permuted:

f = σ(f)

This permutation permutes the list according to what wires we wish to show are equal:

f = [2, 7, 3, 12] ++ [2, 5, 4, 35] ++ [4, 35, 12, 42]

From the circuit in Figure 4 we gather that the following wires must be equal:

a1 = b1, c1 = b3, c3 = a4, c2 = b4

To highlight the values of f and σ(f), the specific values have been subbed out for variables below:

f = [a1, a2, a3, a4] ++ [b1, b2, b3, b4] ++ [c1, c2, c3, c4]
σ(f) = [b1, a2, a3, c3] ++ [a1, b2, c1, c2] ++ [b3, b4, a4, c4]

If the prover is honest, it’s easy to see that these lists will match, in fact, that’s why we have to use variables in the
above list, otherwise the permutation seems to do nothing. But as can also be seen above, if the prover tries to
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cheat by violating a1 = b1 then the permuted σ(f) will not be equal to the original f . As in the above section we
can model the vectors as polynomials using FFT, such that f(ω1) = f1, f(ω2) = f2 . . ..

Then, given the polynomial f(X) we want to check whether:

∀i ∈ [n] : f(ωi) ?= f(ωσ(i))

Where n = |H|. One approach is to use the Grand Product Argument, defined earlier, which would show:

n∏
i=1

f(ωi) =
n∏

i=1
f(ωσ(i))

But this only proves there exists some permutation between f(X) and itself, not necessarily σ. We can start by
trying to model sets of pairs, rather than just sets:

{(ai, bi) | i ∈ [1, n]} = {(ci, di) | i ∈ [1, n]}

Which can be modelled with:

f(X) = ai(X) + βbi(X), g(X) = ci(X) + βdi(X)

Correctness:

We need to prove that:

(a(ωi), b(ωi)) = (c(ωi), d(ωi)) =⇒ a(ωi) + βb(ωi) = c(ωi) + βd(ωi)

Which holds trivially, since the LHS implies a(ωi) = c(ωi), b(ωi) = d(ωi), meaning we can rewrite:

a(ωi) + βb(ωi) = a(ωi) + βb(ωi)

□

Soundness:

We need to prove that for a uniformly random β:

a(ωi) + βb(ωi) = c(ωi) + βd(ωi) =⇒ a(ωi) = c(ωi) ∧ b(ωi) = d(ωi)

Except with negligible probability. Assuming a(ωi) + βb(ωi) ̸= c(ωi) + βd(ωi) ∧ g(ωi):

a(ωi) + βb(ωi) = c(ωi) + βd(ωi) =⇒
a(ωi)− c(ωi) = βd(ωi)− βb(ωi) =⇒
a(ωi)− c(ωi) = β · (d(ωi)− b(ωi)) =⇒

β = a(ωi)− c(ωi)
d(ωi)− b(ωi)

Since all the left-hand sides are constant and β is uniformly random in F, there is a 1/|F| probability that the claim
doesn’t hold. Thus, we have soundness.

□

The prover then wants to prove that for i ∈ [n] : fi = fσ(i), for a specific permutation σ:

{(fi, i) | i ∈ [1, n]} = {(fi, σ(i)) | i ∈ [1, n]} =⇒ fi = fσi
=⇒ f = σ(f)
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Which for polynomials:

{(f(ωi), id(ωi)) | i ∈ [1, n]} = {(f(ωi), σ(ωi)) | i ∈ [1, n]} =⇒ f(ωi) = f(ωσ(i))

So now we can use the Grand Product Argument to prove that ∀i ∈ [n] : f(ωi) ?= f(ωσ(i)), with:

f ′(X) = f(X) + βid(X), g′(X) = f(X) + βσ(X)

Example

An example, without soundness values β, γ, for why this approach to proving σ(f) = f is sensible:

id(1) = 1 id(2) = 2 id(3) = 3 id(4) = 4 id(5) = 5 id(6) = 6
σ(1) = 1 σ(2) = 4 σ(3) = 5 σ(4) = 6 σ(5) = 3 σ(6) = 2∏

ω∈H

(f(ω) + id(ω)) = (f(ω1) + 1)(f(ω2) + 2)(f(ω3) + 3)(f(ω4) + 4)(f(ω5) + 5)(f(ω6) + 6)∏
ω∈H

(f(ω) + σ(ω)) = (f(ω1) + 1)(f(ω2) + 4)(f(ω3) + 5)(f(ω4) + 6)(f(ω5) + 3)(f(ω6) + 2)

= (f(ω1) + 1)(f(ω4) + 4)(f(ω5) + 5)(f(ω6) + 6)(f(ω3) + 3)(f(ω2) + 2)
= (f(ω1) + 1)(f(ω2) + 2)(f(ω3) + 3)(f(ω4) + 4)(f(ω5) + 5)(f(ω6) + 6)

5.2.2.1 Permutation Argument Over Multiple Polynomials In Plonk, we don’t have a single polynomial
spanning over each a, b, c. Since the Grand Product Argument operates over products, we can define:

fa(X) = a(X) + id(X)β + γ

fb(X) = b(X) + id(n + X)β + γ

fc(X) = c(X) + id(2n + X)β + γ

ga(X) = a(X) + σ(X)β + γ

gb(X) = b(X) + σ(n + X)β + γ

gc(X) = c(X) + σ(2n + X)β + γ

f(X) = fa(X) · fb(X) · fc(X)
g(X) = ga(X) · gb(X) · gc(X)

Which means that for our example circuit in Figure 4, we now get the table:

ωi a b c ql qr qo qm qc ida idb idc σa σb σc

ω1 3 0 0 1 0 0 0 -3 1 9 17 14 9 17
ω2 5 0 0 1 0 0 0 -5 2 10 18 5 10 18
ω3 47 0 0 1 0 0 0 -47 3 11 19 23 11 19
ω4 2 2 4 0 0 -1 1 0 4 12 20 12 4 6
ω5 5 7 35 0 0 -1 1 0 5 13 21 2 13 7
ω6 4 3 12 0 0 -1 1 0 6 14 22 20 1 15
ω7 35 12 47 1 1 -1 0 0 7 15 23 21 22 3
ω8 0 0 0 0 0 0 0 0 8 16 24 8 16 24

5.2.3 Public Inputs

It might be useful to have public inputs for a circuit. This is not to be confused with constants in the circuits:

• A constant is always the value set by the circuit, and is public, known by both the prover and verifier.
• A witness is an input value to the circuit, and is private, known only by the prover.
• A public input is an input value to the circuit, and is public, known by both the prover and verifier.
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We have a vector of public inputs:
x : |x| = ℓ2

Naturally leading to a polynomial:
x(X) = ifft(x)

The number of public inputs, ℓ2, is embedded in the circuit specification. The first ℓ2 rows of the witness table is
reserved for public inputs. For each xi ∈ x, we set ql(ωi) = 1, a(ωi) = xi and the rest of the witness and selector
polynomials to zero. FGC must then also be updated:

fGC(X) = a(X)ql(X) + b(X)qr(X) + c(X)qo(X) + a(X)b(X)qm(X) + qc(X) + x(X)

5.2.4 Input Passing

Since we use a cycle of curves, each language instruction is mapped to one of two circuits, verifying both circuits
should convince the verifier that the program f(w, x) is satisfied. However, for Elliptic Curve Multiplication and the
Poseidon Hashes, we need to pass inputs from one circuit to another.

Passing v(q) → v(p):

We start with the simple case. We have a circuit over Fp, R(p), and a circuit over Fq, R(q), with p > q. We wish to
pass a value, v(q) ∈ Fq, from R(q) to R(p). We can add v(p) to the public inputs to R(q), but then we still need to
convince the verifier that v(q) = v(q). Naively, the verifier could add the check that v(q) ?= v(p). But this won’t work
for IVC, since we can’t check equality across circuits, in-circuit. Instead we compute the commitment to v(q) on the
R(q)-side.

C
(q)
IP := v(q) ·G(q)

1 ∈ Ep(Fq)

The scalar operation may seem invalid, but since we know that v(q) ≤ q − 1 < p− 1, it can logically be computed
by the usual double and add, since the bits of v(q) will correspond to the bits of v(p) if lift(v(q)) = lift(v(p)), where
lift ∈ F→ Z is a function that returns the integer value of a finite field. If C

(q)
IP is emitted in the public inputs of the

circuit, then the verifier will know that C
(q)
IP is a commitment to v(q). To convince the verifier of the desired relation

that lift(v(q)) = lift(v(p)), it will now suffice to convince them that v(p) is a valid opening of C
(q)
IP . So the verifier

checks manually that:

C
(q)
IP

?= v(p) ·G(q)
1

Which, given that the rest of the proof verifies correctly, will then imply that v(q) = v(p). If the verifier is encoded as
a circuit, then we need to input pass when performing this additional check, since scalar multiplication itself requires
input passing to work. However this is no problem, since that circuit-verifier will be verified by another verifier! At
some point, this deferral will end with a regular verifier, that can compute the commitment outside the circuit.

Passing v(p) → v(q):

What if we reverse the flow? We now have a value v(p), in R(p), that we want to pass to R(q). Here the problem is
that since p > q, the value might be too large to represent in the Fq-field. The solution is to decompose the value:

v(p)
p = 2h(p) + l(p)

Where h(p) represents the high-bits of v(p) (h(p) ∈ [0, 2⌊log p⌋]) and l(p) represents the low-bit (h(p) ∈ B). The value
v(p) can now be represented with h(p), l(p), both of which are less than q. Which means we can pass the value to
R(q).

The constraints added to R(p) then becomes:

• C
(p)
IP

?= h ·G(p)
1 + l ·G(p)

2
• v = 2h(p) + l(p)

• h ∈ [0, 2⌊log p⌋] (Using the rangecheck gate, corresponding to a range proof)
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• l ∈ B (A Simple boolean constraint)

Combining Commitments:

We of course don’t need to commit each time we pass inputs, we can create a standard vector Pedersen commit,
containing all the passed values:

C
(p)
IP = h(p)

v1
·G(p)

1 + l(p)
v1
·G(p)

2 + h(p)
v2
·G(p)

3 + l(p)
v2
·G(p)

4 + . . .

Now, the Rq-verifier and Rp-verifier, would each also take in a single input pass vector, in addition to the standard
public input vector:

InputPass(q→p) ∈ Fk
p, InputPass(p→q) ∈ Fk

q

Each passed input is of course public, so the public input vector is then defined as:

PublicInputs(p)
new := PublicInputs(p) ++ InputPass(p)

For both the verifier and prover of course. Each of the R(p) and R(q) verifier can then use InputPass(q→p), InputPass(p→q)

to verify C
(p)
IP , C

(q)
IP :

Example

Take the following example circuit:

Example Circuit
Inputs

x, y ∈ Fp

P ∈ Ep(Fq)
1: z := x + y ∈ Fp

2: Q1 := z · P ∈ Ep(Fq)
3: Q2 := x · P ∈ Ep(Fq)
4: α := H(Q1, Q2) ∈ Fp

Which means that we pass z, x from R(p) to R(q) and α from R(q) to R(p). Thus, we need to split z, x but
not α. We add the constraints:

• R(p):
– C

(p)
IP := h

(p)
z ·G(p)

1 + l
(p)
z ·G(p)

2 + h
(p)
x ·G(p)

3 + l
(p)
x ·G(p)

4
– z := 2 · h(p)

z + l
(p)
z (Decomposition correctness check)

– h
(p)
z ∈ [0, 2⌊log p⌋] (Range check)

– l
(p)
z ∈ B (Boolean check)

• R(q):
– C

(q)
IP := α(q) ·G(q)

1

Now the Rq-verifier and Rp-verifier, would each also take in the input pass vectors:

InputPass(p→q) = [h(q)
z , l(q)

z , h(q)
x , l(q)

x ]

InputPass(q→p) = [α(p)]

Each passed input is of course public, so the public input vector is then defined as:

PublicInputs(p)
new := PublicInputs(p) ++ InputPass(p)

For both the verifier and prover of course. Now the verifier needs to verify what it otherwise would, but also
that:

C
(p)
IP

?= h(q)
z ·G

(p)
1 + l(q)

z ·G(p)
2 + h(q)

x ·G
(p)
3 + l(q)

x ·G(p)
4

C
(q)
IP

?= α(p) ·G(q)
1
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5.3 Custom Gates
For each gate, we have a Witness Row, Selector Row and a Coefficient Row. These rows describe the form of the
constraints. Take the addition gate as an example:

Example - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
a b c 0 0 0 0 0 0 0 0 0 0 0 0 0
I1 I2 O1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Here the first row describes the 16 witness inputs associated for the gate. In this case only three witnesses are
needed, so the other columns are set to 0. The Second row describes the copy constraints. In this case that means
that slot 1 (corresponding to w1), is copy constrained to the left input wire, slot 2 (corresponding to w2) is copy
constrained to the right input wire and slot 3 (corresponding to w3) is copy constrained to the first, and for this
gate; only, output wire.

Example - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 1 -1 0 0 0 0 0 0 0 0

This means that the ql = 1, qr = 1, qo = −1 is set for this row. So that for this row fGC becomes:

fGC = qlw1 + qrw2 + qow3 + · · · = 0 =⇒ w1 + w2 − w3 = 0

We also have a coefficient row for each gate, that can store constants for each gate. This is used in the scalar
multiplication, Poseidon and range-check gates. For all other gates they are set to zero. If they are not listed in a
gate specification below, then all row-values are set to zero. This is also the case for our example add gate.

Example - Coefficient Row

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Some of the more complicated gates will have their own designated selector polynomial and a table of constraints.
The simplest one is the equals gate:

Example - Custom Constraints

Degree Constraint Meaning
3 (x− y) · b x ̸= y =⇒ b = 0
3 (x− y) · α + b− 1 x = y =⇒ b = 1

It’s implicit that each constraint in the constraint tables should always be equal to zero. To translate this into the form
expected by fGC(X), we start by multiplying each row by the relevant designated selector polynomial, in this case
it’s q(=)(X). This also explains why the degree is three, not two, in the table. The values x, y, b, α can be read from
the witness table from the equality gate, which in this case leads to x = w1(X), y = w2(X), b = w3(X), α = w4(X).
Finally, a challenge (in this case ζ) multiplied to each row, creating a geometric sum. Taken together, this leads to
adding the following terms to fGC(X) for the equality gate:
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fGC(X) = · · ·+ q(=)(X) · (((w1(X)− w2(X)) · w3(X)) + ζ((w1(X)− w2(X)) · w4(X) + w3(X)− 1)) + . . .

fGC(X) = . . .

+ ζ0 · q(=)(X) · ((w1(X)− w2(X)) · w3(X))
+ ζ1 · q(=)(X) · ((w1(X)− w2(X)) · w4(X) + w3(X)− 1))
+ . . .

Of course, if this gate had more rows in the constraint table, the next term would be multiplied with ζ2 and so
on. If a constraint uses exponentiation, for example, if a row states x2 and x = w1(X) then that simply means
w1(X) · w1(X) as one would expect.

5.3.1 Field

5.3.1.1 Addition, Subtraction, Multiplication, Negation For completeness, we include the witness tables
for field addition, subtraction, multiplication and negation even though they are part of vanilla Plonk as originally
defined in the Plonk paper[Gabizon et al. 2019]:

Addition:

Field Addition - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
a b c 0 0 0 0 0 0 0 0 0 0 0 0 0
I1 I2 O1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Field Addition - Selector Row
ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 1 -1 0 0 0 0 0 0 0 0

Subtraction:

Field Subtraction - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
a b c 0 0 0 0 0 0 0 0 0 0 0 0 0
I1 I2 O1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Field Subtraction - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 -1 -1 0 0 0 0 0 0 0 0

Negation can be modelled as −a = 0− a, a dedicated negation gate would also be one row anyways.

Multiplication:

Field Multiplication - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
a b c 0 0 0 0 0 0 0 0 0 0 0 0 0
I1 I2 O1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Field Multiplication - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 -1 1 0 0 0 0 0 0 0
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Inverse:

To model inverses, we can witness the inverse of x, x−1, and constrain that x · x−1 = 1:

Field Inverse - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
x x−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I1 O1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Field Inverse - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 1 1 0 0 0 0 0 0

Assert Equals:

We can also create a gate that asserts equality between two values x and y:

Field Inverse - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
x y 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I1 I2 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Field Inverse - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 -1 0 0 0 0 0 0 0 0 0

5.3.2 Booleans

5.3.2.1 Witness Boolean To witness a boolean, we need to constrain that the witnessed value indeed is a bit:

(b · b)− b = 0

This can be modelled using the vanilla Plonk selector polynomials.

Witness Boolean - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
b b 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O1 O1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Witness Boolean - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

-1 0 0 1 0 0 0 0 0 0 0
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5.3.2.2 Equality To check whether two values are equal, b = x
?= y, we need to witness b and inv0(x− y):

b =
{

1 if x = y,

0 otherwise.

inv0(x) =
{

x−1 if x ̸= 0,

0 otherwise.

α = inv0(x− y)

Now, we want that x = y =⇒ b = 1 and a ̸= b =⇒ α = 0.

Equality - Custom Constraints

Degree Constraint Meaning
3 (x− y) · b x ̸= y =⇒ b = 0
3 (x− y) · α + b− 1 x = y =⇒ b = 1

Equality - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
x y b α 0 0 0 0 0 0 0 0 0 0 0 0
I1 I2 O1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Equality - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 0 0 0 0 0 0 1 0

Completeness:

Case x ̸= y ∧ b = 0:

(x− y) · 0 = 0

(x− y) · (x− y)−1 + 0− 1 = 1− 1 = 0

Case x = y ∧ b = 1:

(x− y) · 1 = 0 · 1 = 0

(x− y) · 0 + 1− 1 = 1− 1 = 0

Soundness:

The first constraint is trivial. For the second constraint:

Case x ̸= y:

The first constraint ensures that b = 0 in this case:

(x− y) · α + 0− 1 = 0 =⇒
(x− y) · α = 1

Case x = y:
(x− y) · α + b− 1 = 0 =⇒

0 · α + b− 1 = 0 =⇒
b = 1
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5.3.2.3 And, Or To implement “And” for two booleans, x, y, we can simply multiply them, costing a single
row. Because x, y are constrained to be bits, when they are input, the output is also guaranteed to be a bit. To
implement “Or”, we can compose the following constraint that c = x ∨ y = x + y − (x · y). To see why it works,
given that x, y are already constrained to be bits:

x y Out
0 0 0 + 0− (0 · 0) = 0
0 1 0 + 1− (0 · 1) = 1
1 0 1 + 0− (1 · 0) = 1
1 1 1 + 1− (1 · 1) = 1

This can naively be done in three rows, but we can compress it to a single row as 0 = x + y − c− (x · y):

Or - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
a b c 0 0 0 0 0 0 0 0 0 0 0 0 0
I1 I2 O1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Or - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 1 -1 -1 0 0 0 0 0 0 0

5.3.3 Rangecheck

We want to constrain x ∈ [0, 2254). We decompose x into 254 bits and check that:

x =
253∑
i=0

bi · 2i

The entire range-check then consists of 254/15 = 17 rows:

Rangecheck - Witness Table

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
acc0 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14
acc1 b15 b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29
acc2 b30 b31 b32 b33 b34 b35 b36 b37 b38 b39 b40 b41 b42 b43 b44
acc3 b45 b46 b47 b48 b49 b50 b51 b52 b53 b54 b55 b56 b57 b58 b59
acc4 b60 b61 b62 b63 b64 b65 b66 b67 b68 b69 b70 b71 b72 b73 b74
acc5 b75 b76 b77 b78 b79 b80 b81 b82 b83 b84 b85 b86 b87 b88 b89
acc6 b90 b91 b92 b93 b94 b95 b96 b97 b98 b99 b100 b101 b102 b103 b104
acc7 b105 b106 b107 b108 b109 b110 b111 b112 b113 b114 b115 b116 b117 b118 b119
acc8 b120 b121 b122 b123 b124 b125 b126 b127 b128 b129 b130 b131 b132 b133 b134
acc9 b135 b136 b137 b138 b139 b140 b141 b142 b143 b144 b145 b146 b147 b148 b149
acc10 b150 b151 b152 b153 b154 b155 b156 b157 b158 b159 b160 b161 b162 b163 b164
acc11 b165 b166 b167 b168 b169 b170 b171 b172 b173 b174 b175 b176 b177 b178 b179
acc12 b180 b181 b182 b183 b184 b185 b186 b187 b188 b189 b190 b191 b192 b193 b194
acc13 b195 b196 b197 b198 b199 b200 b201 b202 b203 b204 b205 b206 b207 b208 b209
acc14 b210 b211 b212 b213 b214 b215 b216 b217 b218 b219 b220 b221 b222 b223 b224
acc15 b225 b226 b227 b228 b229 b230 b231 b232 b233 b234 b235 b236 b237 b238 b239
acc16 b240 b241 b242 b243 b244 b245 b246 b247 b248 b249 b250 b251 b252 b253 0
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
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The last row still indicates the copy constraints4. Each acci is the accumulation of all previously witnessed bits, so:

acc0 = 0

acc1 =
14∑

i=0
bi · 2i

acc2 =
29∑

i=0
bi · 2i

acc3 = . . .

However, for this, we still need to witness each power of two. Luckily, these are constant and fixed in the circuit
specification, so we can use the coefficient table for this:

Rangecheck - Coefficient Table

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15
20 21 22 23 24 25 26 27 28 29 210 211 212 213 214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

290 291 292 293 294 295 296 297 298 299 2100 2101 2102 2103 2104

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 0

Now for the constraints, for each row in the tables above:
4Except, this table doesn’t capture the fact that acc0 needs to be constrained to a zero constant value in the circuit! All other rows

does not have any copy constraints associated with it.
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Range Check - Custom Constraints

Degree Constraint Meaning
3 b(i·15+0) · (b(i·15+0) − 1) b(i·15+0), . . . b(i·15+14) ∈ B
3 b(i·15+1) · (b(i·15+1) − 1)
3 b(i·15+2) · (b(i·15+2) − 1)
3 b(i·15+3) · (b(i·15+3) − 1)
3 b(i·15+4) · (b(i·15+4) − 1)
3 b(i·15+5) · (b(i·15+5) − 1)
3 b(i·15+6) · (b(i·15+6) − 1)
3 b(i·15+7) · (b(i·15+7) − 1)
3 b(i·15+8) · (b(i·15+8) − 1)
3 b(i·15+9) · (b(i·15+9) − 1)
3 b(i·15+11) · (b(i·15+11) − 1)
3 b(i·15+12) · (b(i·15+12) − 1)
3 b(i·15+13) · (b(i·15+13) − 1)
3 b(i·15+14) · (b(i·15+14) − 1)
2 acci+1 acci+1 = acci +

∑14
j=0 b(i·15+j)

2 −acci

3 −(b(i·15+0) · 2(i·15+0))
3 −(b(i·15+1) · 2(i·15+1))
3 −(b(i·15+2) · 2(i·15+2))
3 −(b(i·15+3) · 2(i·15+3))
3 −(b(i·15+4) · 2(i·15+4))
3 −(b(i·15+5) · 2(i·15+5))
3 −(b(i·15+6) · 2(i·15+6))
3 −(b(i·15+7) · 2(i·15+7))
3 −(b(i·15+8) · 2(i·15+8))
3 −(b(i·15+9) · 2(i·15+9))
3 −(b(i·15+10) · 2(i·15+10))
3 −(b(i·15+11) · 2(i·15+11))
3 −(b(i·15+12) · 2(i·15+12))
3 −(b(i·15+13) · 2(i·15+13))
3 −(b(i·15+14) · 2(i·15+14))

However, notice that we reference the next acc (acci+1) in the constraints, but this can be modelled as w1(ωX). Each
of the powers of two are available to the prover and verifier in the coefficient table. Note that this fact also means
that in the constraints like −(b(i·15+0) · 2(i·15+0)), 2(i·15+0) is from the coefficient table, meaning that 2(i·15+0) = r1,
which also increases the degree from two to three.

Analysis:

• Bit constraints: The bit constraints follow the previously defined bit constraint. So from the first series we get:
b(i·15+0), . . . b(i·15+14) ∈ B

• acci+1 constraints: We want to capture that x =
∑253

i=0 bi · 2i. We can make this hold if acc0 = 0 (We can just
copy-constrain acc0 to a zero-constant in the circuit) and acci+1 = acci +

∑14
j=0 b(i·15+j). But taken together,

this is exactly what these bottom-half constraints state, giving us:
acci+1 = acci +

∑14
j=0 b(i·15+j) =⇒ acc17 = x =

∑253
i=0 bi · 2i

Finally, due to the fact that we store the sum in the next row, we need a single zero row to capture the result of the
sum:
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Rangecheck (Zero Row) - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
acc17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Rangecheck (Zero Row) - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 0 0 0 0 0 0 0 0

We copy constrain acc17 to I1 to indicate that x = acc17 must hold. Since we only copy constrain I1, a rangecheck
can be viewed as a gate with one input and zero outputs.

5.3.4 Poseidon

We also create a special gate type for performing Poseidon[Grassi et al. 2019] hashing. This gate type is inspired from
an equivalent gate in Mina’s Kimchi proof system. At the heart of the Poseidon hashing algorithm lies a cryptographic
sponge construction, like the one seen in SHA3. This is very convenient for Fiat-Shamir transformations, since
information sent to the verifier can cleanly be modelled as sponge absorption, and queries made to the verifier can
be modelled as sponge squeezing. Squeezing and absorbing from the sponge a certain number of times, triggers
a permutation of the sponge state. The original Poseidon paper provide several small variations on how this
permutation can be performed, with a variable number of partial and full rounds of permutation. Kimchi’s approach
to this is to only perform the expensive full rounds, but conversely make a highly specialized gate for only these full
rounds.

A complete permutation of the Poseidon sponge state of size 3, then consists of 55 full rounds of the following
computation:

si = [si,0, si,1, si,2]⊤

sbox(x) = x7

si+1 = M · (sbox(si)) + [ri,0, ri,1, ri,2]⊤

M ∈ F(3,3) represents the constant MDS matrix, and ri represents the 55 round constants. Both of these were
extracted from Kimchi’s code, as we wanted our hash to have the same behaviour and therefore security. If we split
this computation:

s′
0 = M0,0 · s7

0 + M0,1 · s7
0 + M0,2 · s7

0 + ri,0

s′
1 = M1,0 · s7

1 + M1,1 · s7
1 + M1,2 · s7

1 + ri,1

s′
2 = M2,0 · s7

2 + M2,1 · s7
2 + M2,2 · s7

2 + ri,2

Leading us to the constraints:
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Poseidon - Custom Constraints

Degree Constraint Meaning
8 s1,0 −M0,0 · s7

0,0 + M0,1 · s7
0,0 + M0,2 · s7

0,0 + r0,0
8 s1,1 −M1,0 · s7

0,1 + M1,1 · s7
0,1 + M1,2 · s7

0,1 + r0,1 s1 = M · (sbox(s0)) + [r0,0, r0,1, r0,2]⊤
8 s1,2 −M2,0 · s7

0,2 + M2,1 · s7
0,2 + M2,2 · s7

0,2 + r0,2
8 s2,0 −M0,0 · s7

1,0 + M0,1 · s7
1,0 + M0,2 · s7

1,0 + r1,0
8 s2,1 −M1,0 · s7

1,1 + M1,1 · s7
1,1 + M1,2 · s7

1,1 + r1,1 s2 = M · (sbox(s1)) + [r1,0, r1,1, r1,2]⊤
8 s2,2 −M2,0 · s7

1,2 + M2,1 · s7
1,2 + M2,2 · s7

1,2 + r1,2
8 s3,0 −M0,0 · s7

2,0 + M0,1 · s7
2,0 + M0,2 · s7

2,0 + r2,0
8 s3,1 −M1,0 · s7

2,1 + M1,1 · s7
2,1 + M1,2 · s7

2,1 + r2,1 s3 = M · (sbox(s2)) + [r2,0, r2,1, r2,2]⊤
8 s3,2 −M2,0 · s7

2,2 + M2,1 · s7
2,2 + M2,2 · s7

2,2 + r2,2
8 s4,0 −M0,0 · s7

3,0 + M0,1 · s7
3,0 + M0,2 · s7

3,0 + r3,0
8 s4,1 −M1,0 · s7

3,1 + M1,1 · s7
3,1 + M1,2 · s7

3,1 + r3,1 s4 = M · (sbox(s3)) + [r3,0, r3,1, r3,2]⊤
8 s4,2 −M2,0 · s7

3,2 + M2,1 · s7
3,2 + M2,2 · s7

3,2 + r3,2
8 s5,0 −M0,0 · s7

4,0 + M0,1 · s7
4,0 + M0,2 · s7

4,0 + r4,0
8 s5,1 −M1,0 · s7

4,1 + M1,1 · s7
4,1 + M1,2 · s7

4,1 + r4,1 s5 = M · (sbox(s4)) + [r4,0, r4,1, r4,2]⊤
8 s5,2 −M2,0 · s7

4,2 + M2,1 · s7
4,2 + M2,2 · s7

4,2 + r4,2

For the first row:

Poseidon - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
s0,0 s0,1 s0,2 s1,0 s1,1 s1,2 s2,0 s2,1 s2,2 s3,0 s3,1 s3,2 s4,0 s4,1 s4,2 0
I1 I2 I3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Poseidon - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 0 0 1 0 0 0 0 0

This is missing the last 3 states, but these are used in the next five rounds of the permutation, so you can add these
constraints, witnesses and selector polynomials 10 more times to complete the permutation5. Finally, a zero-row can
be added to store the final state after 55 rounds (11 times the above gates):

Poseidon (Zero Row) - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
s55,0 s55,1 s55,2 0 0 0 0 0 0 0 0 0 0 0 0 0
O1 O2 O3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Poseidon (Zero Row) - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 0 0 1 0 0 0 0 0

5.3.5 Elliptic Curves

5.3.5.1 Witness Point Points are represented in Affine Form, and the identity point is represented as O = (0, 0).
0 is not a valid x-coordinate of a valid point, because we need the curve equation to hold (y2 = x3 + 5), this is not
possible since 5 is not square in Fp and 0 is not a y-coordinate in a valid point since −5 is not a cube in Fq.

5Obviously, for the next 10 rounds there is no copy constraints.
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To witness a point, we have to constrain that the witnessed point is on the curve. For the Pallas/Vesta curves used
we have the curve equation. So we need constraints that encodes that x ̸= 0 ∧ y ̸= 0 =⇒ y2 − x3 − 5 = 0:

Witness Point - Custom Constraints

Degree Constraint Meaning
5 x · (y2 − x3 − 5) = 0 x ̸= 0 =⇒ (y2 − x3 − 5) = 0
5 y · (y2 − x3 − 5) = 0 y ̸= 0 =⇒ (y2 − x3 − 5) = 0

Witness Point - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
x y 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O1 O2 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Witness Point - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 0 0 0 1 0 0 0 0

Soundness and completeness hold trivially.

5.3.5.2 Point Addition In the constraints, we use a trick similar to the one used in the equality gate, where we
model the condition x = 0 =⇒ y = z by using the constraint (1− x · inv0(x)) · y − z = 0. When x = 0:

0 = (1− x · inv0(x)) · y − z

0 = (1− 0) · y − z

0 = y − z

The inverse is there for correctness, so we don’t constrain the y − z when x ̸= 0.

We witness:

α = inv0(xq − xp)
β = inv0(xp)
γ = inv0(xq)

δ =
{

inv0(yq + yp), if xq = xp,

0, otherwise.

λ =


yq−yp

xq−xp
, if xq ̸= xp,

3x2
p

2yp
, if xq ̸= xp,

0, otherwise.

Where:

inv0(x) =
{

0, if x = 0,

1/x, otherwise.
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Point Addition - Custom Constraints

Degree Constraint Meaning

4 (xq − xp) · ((xq − xp) · λ− (yq − yp)) xq ̸= xp =⇒ λ = yq−yp

xq−xp

5 (1− (xq − xp) · α) · (2yp · λ− 3x2
p) xq = xp ∧ yp ̸= 0 =⇒ λ = 3x2

p

2yp

xq = xp ∧ yp = 0 =⇒ xp = 0

6 (xp · xq · (xq − xp) · (λ2 − xp − xq − xr) xp ̸= 0 ∧ xq ̸= 0 ∧ xq ̸= xp =⇒ xr = λ2 − xp − xq

6 (xp · xq · (xq − xp) · (λ · (xp − xr)− yp − yr) xp ̸= 0 ∧ xq ̸= 0 ∧ xq ̸= xp =⇒ yr = λ · (xp − xq)− yp

6 (xp · xq · (yq + yp) · (λ2 − xp − xq − xr) xp ̸= 0 ∧ xq ̸= 0 ∧ yq ̸= −yp =⇒ xr = λ2 − xp − xq

6 (xp · xq · (yq + yp) · (λ · (xp − xr)− yp − yr) xp ̸= 0 ∧ xq ̸= 0 ∧ yq ̸= −yp =⇒ yr = λ · (xp − xq)− yp

4 (1− xp · β) · (xr − xq) xp = 0 =⇒ xr = xq

4 (1− xp · β) · (yr − yq) xp = 0 =⇒ yr = yq

4 (1− xq · β) · (xr − xp) xq = 0 =⇒ xr = xp

4 (1− xq · β) · (yr − yp) xq = 0 =⇒ yr = yp

4 (1− (xq − xp) · α− (yq + yp) · δ) · xr xq = xp ∧ yq = −yp =⇒ xr = 0
4 (1− (xq − xp) · α− (yq + yp) · δ) · yr xq = xp ∧ yq = −yp =⇒ yr = 0

Point Addition - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
xp yp xq yq xr yr α β γ δ λ 0 0 0 0 0
I1 I2 I3 I4 O1 O2 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Point Addition - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 0 0 0 0 1 0 0 0

We prove soundness and completeness of these constraints in the appendix.

5.3.5.3 Scalar Multiplication We follow a standard double-and-add scalar multiplication algorithm. It’s
specified below. It may seem a bit odd, but it’s just to better relate to the eventual constraints.
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Double-and-Add Scalar Multiplication
Inputs

x The scalar.
P The point to scale.

Output
A A = x · P

1: Let b be the bits of x, from LSB to MSB.
2: Let A = O.
3: Let acc = 0.
4: for i ∈ (255, 0] do
5: acc += bi · 2i

6: Q := 2A
7: R := P + Q
8: S := if bi = 1 then R else Q
9: A := S

10: end for
11: assert acc

?= x
12: return A

There is three points to compute, Q, R, S, we start by constraining the doubling.

• A = O =⇒ Q = O:
• A ̸= O =⇒ Q = 2A:

Standard doubling dictates that to compute the doubling of A = (xa, ya), 2A = Q = (xq, yq):

λ = 3x2
a

2ya

xq = λ2
q − 2 · xa

yq = λq · (xa − xq)− ya

Except when A = O, then becomes Q = O. From this we can derive the constraints. Witness:

γq = inv0(xa)

λq =
{

3x2
a

2ya
, if A ̸= O,

0, otherwise.

And add the following constraints:

Point Doubling - Custom Constraints

Degree Constraint Meaning
4 (1− xa · γq) · xq xa = 0 =⇒ xq = 0
4 (1− xa · γq) · yq xa = 0 =⇒ yq = 0
3 (2 · ya · λq − 3 · x2

a) λq = 3x2
a

2ya

3 (λ2
q − 2 · xa − xq) xq = λ2

q − 2 · xa

3 (λq · (xa − xq)− ya − yq) yq = λq · (xa − xq)− ya

Propositions:

1. xa = 0 =⇒ (xq, yq) = (0, 0)
2. λq = 3x2

a

2ya

3. xq = λ2
q − 2 · xa
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4. yq = λq · (xa − xq)− ya

Cases:

• A = (0, 0) = O:
– Completeness:

1. Holds because (xa, ya) = (xq, yq) = (0, 0)
2. Holds because 0 = λq = xa = ya

3. Holds because 0 = xq = λq = xa

4. Holds because 0 = yq = λq = xa = xq = ya

– Soundness: (xr, yr) = (0, 0) is the only solution to 1.
• A = (xa, ya) ̸= O:

– Completeness:
(1) Holds because xa ̸= 0
(2) Holds because λq = 3x2

p/2yp

(3) Holds because xq = λ2
q − 2 · xa

(4) Holds because yq = λq · (xa − xq)− ya

– Soundness:
Firstly, (2) states that λq is computed correctly, (3) states that xq is computed correctly, (4) states that
yq is computed correctly. Thus, Q = 2A

From here, we simply add the previous point addition constraints, with one small change; we already have γq, which
is used to check whether A is the identity point. However, since A = O =⇒ Q = O, we can replace the γ from the
point addition constraints with the already witnessed γq. Then, soundness and completeness follow trivially from
the previous section. Finally, we need to create constraints for S = if b1 = 1 then R else Q.

Ternary Point - Custom Constraints

Degree Constraint Meaning
3 bi · (bi − 1) bi ∈ B
3 xs − (bi · xr + (1− bi) · xq) xs = if bi = 1 then xr else xq

3 ys − (bi · yr + (1− bi) · yq) ys = if bi = 1 then yr else yq

3 acci+1 − (acci + bi · 2i) acci+1 − (acci + bi · 2i)

Propositions:

(1) bi ∈ B Standard bit constraint
(2) S = if bi = 1 then R else Q xs − (bi · xr + (1− bi) · xq) =⇒ xs = (bi · xr + (1− bi) · xq)

• bi = 0: xs = (0 · xr + (1− 0) · xq) =⇒ xs = xr

• bi = 1: xs = (1 · xr + (1− 1) · xq) =⇒ xs = xr

Since this also holds for ys, yr, yq: S = if bi = 1 then R else Q
(3) acci+1 − (acci + bi · 2i) acci+1 = (acci + bi · 2i)

So, for each iteration of the loop, we witness:

γq = inv0(xa)

λq =
{

3x2
a

2ya
, if A ̸= O,

0, otherwise.
αr = inv0(xq − xp)
βr = inv0(xp)

δr =
{

inv0(yq + yp), if xq = xp,

0, otherwise.

λr =


yq−yp

xq−xp
, if xq ̸= xp,

3x2
p

2yp
, if xq ̸= xp,

0, otherwise.
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Scalar Multiplication - Custom Constraints

Degree Constraint Meaning
4 (1− xa · βq) · xq xa = 0 =⇒ xq = 0
4 (1− xa · βq) · yq xa = 0 =⇒ yq = 0
3 (2 · ya · λq − 3 · x2

a) λq = 3x2
a

2ya

3 (λ2
q − 2 · xa − xq) xq = λ2

q − 2 · xa

3 (λq · (xa − xq)− ya − yq) yq = λq · (xa − xq)− ya

4 (xq − xp) · ((xq − xp) · λr − (yq − yp)) xq ̸= xp =⇒ λr = yq−yp

xq−xp

5 (1− (xq − xp) · αr) · (2yp · λr − 3x2
p) xq = xp ∧ yp ̸= 0 =⇒ λr = 3x2

p

2yp

xq = xp ∧ yp = 0 =⇒ xp = 0
6 xp · xq · (xq − xp) · (λ2

r − xp − xq − xr) xp, xq ̸= 0 ∧ xq ̸= xp =⇒ xr = λ2
r − xp − xq

6 xp · xq · (xq − xp) · (λr · (xp − xr)− yp − yr) xp, xq ̸= 0 ∧ xq ̸= xp =⇒ yr = λr · (xp − xq)− yp

6 xp · xq · (yq − yp) · (λ2
r − xp − xq − xr) xp, xq ̸= 0 ∧ yq ̸= yp =⇒ xr = λ2

r − xp − xq

6 xp · xq · (yq − yp) · (λr · (xp − xr)− yp − yr) xp, xq ̸= 0 ∧ yq ̸= yp =⇒ yr = λr · (xp − xq)− yp

4 (1− xp · βr) · (xr − xq)) xp = 0 =⇒ xr = xq

4 (1− xp · βr) · (yr − yq)) xp = 0 =⇒ yr = yq

4 (1− xq · γq) · (xr − xp)) xq = 0 =⇒ xr = xp

4 (1− xq · γq) · (yr − yp)) xq = 0 =⇒ yr = yp

4 (1− (xq − xp) · αr − (yq + yp) · δr) · xr) xq = xp ∧ yq = −yp =⇒ xr = 0
4 (1− (xq − xp) · αr − (yq + yp) · δr) · yr) xq = xp ∧ yq = −yp =⇒ yr = 0
3 bi · (bi − 1) bi ∈ B
3 (xs − (bi · xr + (1− bi) · xq)) xs = if bi = 1 then xr else xq

3 (ys − (bi · yr + (1− bi) · yq)) ys = if bi = 1 then yr else yq

3 (acci+1 − (acci + bi · 2i)) acci+1 − (acci + bi · 2i)

Scalar Multiplication - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
xa ya acc xp yp xq yq xr yr bi γq λq αr βr δr λr

⊥ ⊥ ⊥ I2 I3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Each next S is stored in the next row, so in the constraints, one would define xs(X) = w1(ωX), ys = w2(ωX), acci+1 =
w3(ωX).

Scalar Multiplication - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 0 0 0 0 0 1 0 0

Scalar Multiplication - Coefficient Row

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15
2i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Meaning that in the constraints 2i = r1(X)

Last Row

We need one last row since the next A = if bi
?= 1 then R else Q is stored in the next row in each iteration.
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Scalar Multiplication (Zero Row) - Witness Row

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
xa ya acc 0 0 0 0 0 0 0 0 0 0 0 0 0
O1 O2 I1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Note: Copy constraining acc to input 1 ensures that x =
∑254

i=0 bi · 2i.

Since this row is just to store the result and copy constrain acc, all selector polynomials are set to zero.

Scalar Multiplication (Zero Row) - Selector Row

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

0 0 0 0 0 0 0 0 0 0 0

5.4 Full Plonk Protocol
Combining all the previously discussed subprotocols we get the full Plonk protocol. Soundness and completeness
should follow from the subprotocols, so we won’t discuss those here, but we will do a short analysis and justification
for the worst-case runtimes of both algorithms.

But first, let’s more precisely define the inputs to the protocols, the circuit, witness and public inputs:

• PlonkCircuit:
– n ∈ F: The number of rows in the trace table, must be a power of two.
– d = n− 1: The degree bound for all committed polynomials.
– ℓ1 ∈ F: The number of input passes, from the other circuit to this circuit.
– ℓ2 ∈ F: The number of public inputs in the circuit.
– ω ∈ F: The base element for the set of roots of unity H = {1, ω, ω2, . . . , ωn−1}
– Commitments:

∗ Cq ∈ E(F)10: Commitments to the selector polynomials
∗ Cr ∈ E(F)15: Commitments to the coefficient polynomials.
∗ Cid ∈ E(F)4: Commitments to the identity polynomials.
∗ Cσ ∈ E(F)4: Commitments to the σ polynomials.

All of these are static for the circuit, meaning that they do not depend on the prover’s private input or public
input.

• PlonkWitness:
– q(e) ∈ (Fn)10

– r(e) ∈ (Fn)15

– id(e) ∈ (Fn)4

– σ(e) ∈ (Fn)4

– w(e) ∈ (Fn)16

Here, we use e to denote that these are evaluations of the polynomials, which are computed by the arithmetizer.
To get the actual polynomials, the prover runs ifft on each of these in round 0.

• PlonkPublicInputs:
– x ∈ Fℓ1+2+ℓ2 : The public inputs for the trace table, containing both the vanilla public inputs (ℓ2), the

inputs passed from the other circuit (ℓ1) a commitment to the passed inputs which has size 2.
• PlonkProof:

– Evaluation Proofs:
∗ πs ∈ EvalProof
∗ πsω ∈ EvalProof

– Evaluations:
∗ q(ξ) ∈ F10

∗ r(ξ) ∈ F15

∗ id(ξ) ∈ F4

∗ σ(ξ) ∈ F4

∗ w(ξ) ∈ F16
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∗ w(ξω) ∈ F3

∗ t(ξ) ∈ F16

∗ z(ξ) ∈ F
∗ z(ξω) ∈ F

– Commitments:
∗ Cw ∈ E(F)16

∗ Ct ∈ E(F)16

∗ Cz ∈ E(F)
All of this PlonkProof is constant size, except the two evaluation proofs which have size O(lg(n)). Thus the
Plonk proof size is also O(lg(n)).
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5.4.1 Prover

Plonk Non-Interactive Prover:
Inputs: PlonkCircuit, PlonkPublicInput, PlonkWitness
Output: PlonkProof
Round 0:

q := [ifft(q(e)
i )]10

i=1, r := [ifft(r(e)
i )]15

i=1, id := [ifft(id(e)
i )]4i=1, σ := [ifft(σ(e)

i )]4i=1,

w := [ifft(w(e)
i )]16

i=1, x(X) := ifft(−x)

Round 1:
1: Cw := [PCDL.COMMIT(w1, d,⊥)]16

i=1
2: T ← Cw

Round 2:
3: T → β, γ
4: f ′(X) :=

∏4
i=1 wi(X) + βidi(X) + γ

5: g′(X) :=
∏4

i=1 wi(X) + βσi(X) + γ
6: Define z:

z(ω1) := 1, z(ωi) :=
∏

1≤j<i
f ′(ωj)
g′(ωj)

7: Cz := PCDL.COMMIT(z, d,⊥)
8: T ← Cz

Round 3:
9: T → α, ζ

10: Define fCG(X) to be all the constraints listed in the custom constraint section, using [1, ζ, ζ2, . . . ] as the
challenges required for the custom constraints. Define f(X), t(X):

fGC(X) := w1(X)q1(X) + w2(X)w2(X) + w3(X)q3(X) + w1(X)w2(X)q4(X) + q5(X) + x(X) + fCG(X)
fCC1(X) := l1(X) · z(X)− 1
fCC2(X) := z(X) · f ′(X)− z(X · ω) · g′(X)
f(X) := fGC(X) + αfCC1(X) + α2fCC2(X)
t(X) := f(X)/zH(X)

11: Split t(X) into t ∈ F16
≤d, s.t:

t(X) =
∑16

i=1(Xn)i−1 · ti(X)
12: Commit to each of them Ct := [PCDL.COMMIT(t1(X), d,⊥)]16

i=1
13: T ← Ct

Round 4:
14: T ← η

15: s(X) =
∑|τ |

i=1 ηi−1 · τi(X) where τ = q ++ w ++ t ++ [z(X)]
16: sω(X) =

∑|τ |
i=1 ηi−1 · τi(X) where τ = [w1(X), w2(X), w3(X), z(X)]

Round 5:
17: T → ξ
18: Cs := PCDL.COMMIT(s(X), d,⊥), Csω

= PCDL.COMMIT(sω(X), d,⊥)
19: πs = PCDL.OPEN(s(X), Cs, d, ξ,⊥)
20: πsω = PCDL.OPEN(sω(X), Csω , d, ξ · ω,⊥)

q(ξ) = [qi(ξ)]10
i=1, r(ξ) = [ri(ξ)]15

i=1, id(ξ) = [idi(ξ)]4i=1, σ(ξ) = [σi(ξ)]4i=1,

w(ξ) = [wi(ξ)]16
i=1, w(ξω) = [wi(ξ · ω)]3i=1, t(ξ) = [ti(ξ)]16

i=1,

return πs, πsω , q(ξ), r(ξ), id(ξ), σ(ξ), w(ξ), w(ξω), t(ξ), z(ξ), z(ξ · ω), Cw, Ct, Cz

Runtime:

First note that all polynomial multiplications can be modelled to run in O(n lg(n)) because they can be modelled
as c(X) = a(X) · b(X) = ifft(fft(a(X)) · fft(b(X))). The runtime of multiplication over the evaluation domain
is O(n) and the runtime of the fft and ifft is O(n lg(n)). Polynomial addition is O(n). The PCDL functions
PCDL.COMMIT, PCDL.OPEN have a runtime of O(n). Therefore the worst-case runtime of the prover is O(n lg(n)).
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5.4.2 Verifier

Plonk Non-Interactive Verifier:
Inputs: PlonkCircuit, PlonkPublicInput, PlonkProof
Output: Result(⊤,⊥)
Round 1:

1: T ← Cw

Round 2:
2: T → β, γ
3: T ← Cz

Round 3:
4: T → α, ζ
5: T ← Ct

Round 4:
6: T → η
7: T ← Cs, Csω

Round 5:
8: T → ξ
9: Compute:

ξn using iterative squaring, since n is a power of 2 (lg(n) multiplications).
l1(ξ) = ω·(ξn−1)

n·(ξ−ω)
zH(ξ) = ξn − 1
x(ξ) =

∑ℓ1+2+ℓ2
i=1 li(ξ) · (−xi) where li(ξ) = ωi·(ξn−1)

n·(ξ−ωi)
10: Define fCG(ξ) to be all the constraints listed in the custom constraint section, using [1, ζ, ζ2, . . . ] as the challenges

required for the custom constraints, and the evaluations (q(v), r(v), w(v), w(v)
ω ) provided by the prover. Then,

define f(ξ), t(ξ):
f ′(ξ) =

∏4
i=1 w

(v)
i + β · id(v)

i + γ

g′(ξ) =
∏4

i=1 w
(v)
i + β · σ(v)

i + γ

fGC(ξ) = w
(v)
1 q

(v)
1 + w

(v)
2 q

(v)
2 + w

(v)
3 q

(v)
3 + w

(v)
1 w

(v)
2 q

(v)
4 + q

(v)
5 + x(ξ) + fCG(ξ)

fCC1(ξ) = l1(ξ) · (z(v) − 1)
fCC2(ξ) = z(v) · f ′(ξ)− z

(v)
ω · g′(ξ)

f(ξ) = fGC(ξ) + α · fCC1(ξ) + α2 · fCC2(ξ)
t(ξ) =

∑16
i=1(ξn)i−1 · t(v)

i

11: Compute the evaluations and commitments of s(X), sω(X):
s(ξ) :=

∑|τ |
i=1 ηi−1 · τi where τ = q(v) ++ w(v) ++ t(v) ++ [z(ξ)]

sω(ξ) :=
∑|τ |

i=1 ηi−1 · τi where τ = [w1(ξ · ω), w2(ξ · ω), w3(ξ · ω), z(ξ · ω)]
Cs :=

∑|τ |
i=1 ηi−1 · τi where τ = Cq ++ Cw ++ Ct ++ [Cz]

Csω
:=

∑|τ |
i=1 ηi−1 · τi where τ = [Cw1 , Cw2 , Cw3 , Cz]

12: Compute the commitment to the passed inputs:
CIP :=

∑ℓ1
i=1 xi ·Gi

C ′
IP := (xℓ1+1, xℓ1+2)

Checks:
13: CIP

?= C ′
IP

14: f(ξ) ?= t(ξ) · zH(ξ)
15: PCDL.CHECK(Cs, d, ξ, s(ξ), πs)
16: PCDL.CHECK(Csω

, d, ξ · ω, sω(ξ), πsω
)

Runtime:

• ξn is O(lg(n)) multiplications, due to iterative squaring.
• x(ξ) is O(ℓ)
• The computation of f(ξ), t(ξ) doesn’t depend on n, so that part is constant. Same is true for s(X), sω(X).
• The computation of CIP is ℓ1 scalar multiplications.
• All transcript hash interactions are also constant.
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Overall, the worst-case runtime with fixed ℓ1, ℓ2 and variable n is O(lg(n)).

6 IVC Scheme
We start by sketching out a novel use-case for IVC, a chain of signatures for use in modern blockchains for fast
catchup. Then we formally define the IVC scheme required to achieve this.

6.1 Chain of Signatures
BFT-style blockchains with committees6, such as Concordium and Partisia, have elected committees sign blocks.
The highest block signed by the current committee is deemed the latest block. During catch-up, when a node has
to sync with the blockchain, it has to download all previous blocks from the first block, the genesis block. This
is also the case for light nodes that require less resources, with slightly inferior security guarantees. We want to
enable near-instant catchup for light clients in blockchains based on BFT-style blockchains with committees with
only minimal security slackening compared to traditional light client catchup.

We specify a recursive SNARK construction and instantiate it over a chain of signatures, which would allow safe
catchup for light clients on the forementioned blockchains. Taking Concordium as the main example; they elect a
committee once a day and that committee is responsible for signing valid blocks. Concordium is a proof of stake
blockchain so the committee is elected according to the size of their staked tokens. They could create a parallel IVC
blockchain, one where each block contains:

Bi = {σ(pk)
i , ji = i, pki, ptri ∈ B256, σ

(ptr)
i }

• σ
(pk)
i : A signature on the public key of the current committee (pki), signed by the previous committee identified

by the public key pki−1.
• ji: A sequential block-id. This must be present for the soundness of the IVC circuit.
• pki: The public key of the current committee.
• ptri: A hash of the most recent block on the main blockchain.
• σ

(ptr)
i : A signature on ptri, signed by the current public key.

Traditionally, a blockchain would need the hash of the previous block to tie together blocks. We can omit that since
we already have the signature σ

(pk)
i , linking together pki−1 and pki, thus also linking together Bi−1 and Bi. To

verify this IVC blockchain, one would need all blocks from the genesis block B0, until the most recent block Bn.
Then they may verify the relation:

Verifypki−1(σ(pk), pki) ∧Verifypki
(σ(ptr), ptri) ∧ ji

?= ji−1 + 1

Now we have a chain of signatures from the first genesis committee, all the way to the final committee at block
n. Assuming that the first committee is honest, it should only sign the next honestly elected committee, which by
the security of the blockchain should also be majority-honest. That committee will then also only sign the next
honest committee. We can continue this argument until reaching committee n, which contains a pointer to the most
recent block on the main blockchain. We can now trust that block, and trust the blockchain, given that we trust the
genesis committee, and that the subsequent committees have been honest.

This is of course not much of an improvement, to catch up on the main blockchain you need to catch up on some
other blockchain. The second blockchain is however constructed to be SNARK-friendly. There is only a single public
key, representing each committee, the signature scheme can be Schnorr’s using poseidon for the hashing of messages,
which works well in SNARK constructions. Importantly, this secondary blockchain can use Poseidon hashes, while
the main blockchain may prefer Sha3 for security benefits, and the secondary blockchain may use Schnorr signatures,
while the main blockchain doesn’t have to change their signature scheme.

The main committee still needs to generate and sign using the Schnorr signature scheme, but for this they can use a
multisignature scheme like FROST[Komlo and Goldberg 2021]. In the next section we define the IVC scheme that’s
able to support this.

6An example is any blockchain based on the HotStuff[Yin et al. 2019] consensus, which includes Concordium and Partisia.
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6.2 IVC Construction
We build the IVC construction using the defined Plonk NARK:

• PLONK.PROVER(R : Circuit, x : PublicInputs, w : Witness)→ Proof
• PLONK.VERIFIER(R : Circuit, x : PublicInputs, π : Proof)→ Result(⊤,⊥)
• PLONK.VERIFIERFAST(R : Circuit, x : PublicInputs)→ Result(⊤,⊥)

The (PLONK.PROVER, PLONK.VERIFIER) pair are the same as those defined in the previous section. The
PLONK.VERIFIERFAST, however, is almost the same as PLONK.VERIFIER, but without the PCDL.CHECK per-
formed on the instances! Instead, the instances can be checked separately by the ASDL.VERIFIER, which lets us
define the IVC-circuit, using only sub-linear operations.

Each step in the IVC protocol built from accumulation schemes, consists of the triple (si−1, πi−1, acci−1), representing
the previous proof, accumulator and value. We also operate over two curves now, with two accumulators, two proofs
and a single state:

(si, acci = (acc(p)
i , acc(q)

i ), πi = (π(p)
i , π

(q)
i ))

In the base-case π0 are invalid proofs, and acc0 are valid accumulation of some dummy instances. This gives us the
following chain:

(s0, π0, acc0) (s1, π1, acc1) . . . (sn, πn, accn)
P(s0, π0, acc0) P(s1, π1, acc1) P(sn−1, πn−1, accn−1)

Figure 5: A visualization of the relationship between F, s, π and acc in an IVC setting using Accumulation
Schemes. Where P is defined to be P(si−1, πi−1, acci−1) = IVC.PROVER(si−1, πi−1, acci−1) = πi, si = F (si−1),
acci = AS.PROVER(q, acci−1).

Before describing the IVC protocol, we first describe the circuit for the IVC relation as it’s more complex than for
the naive SNARK-based approach. Let:

cVFp = PLONK.VERIFIERFAST(R(q)
IV C , x

(p)
i−1, π

(p)
i−1) ?= ⊤

cASp
= AS.VERIFIER(q(p), acc(p)

i−1, acc(p)
i ) ?= ⊤

cVFq
= PLONK.VERIFIERFAST(R(q)

IV C , x
(q)
i−1, π

(q)
i−1) ?= ⊤

cASq
= AS.VERIFIER(q(q), acc(q)

i−1, acc(q)
i ) ?= ⊤

cV = cVFp
∧ cASp

∧ cVFq
∧ cASq

c0 = si−1
?= s0

cF = F ′(si−1, si)
cIVC = (c0 ∨ cV ) ∧ cF

We also need to check that the next i is equals to the previous i incremented once, but this can be modelled as part
of the state transition check function F ′.
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R
(p)
IV C x

(p)
i−1 π

(p)
i−1 q(p) acc(p)

i−1 acc(p)
i R

(q)
IV C x

(q)
i−1 π

(q)
i−1 q(p) acc(p)

i−1 acc(p)
i

PLONK.VERIFIERFAST AS.VERIFIER PLONK.VERIFIERFAST AS.VERIFIER

∧
si si−1 s0

si−1
?= s0F ′(si−1, si)

∨

∧

Figure 6: A visualization of RIVC.

For the purpose of creating the chain of signatures we can define:

s0 = (σ0, j0 = 0, pk0)
si = (σi, ji, pki)

F ′(si−1, si) = Schnorr.Verifypki−1(σi, pki) ∧ ji
?= ji−1 + 1

The first signature, s0, can be invalid, since it’s never checked. The ji
?= ji−1 is required for soundness, it means

that each iteration will terminate. The si−1
?= s0 will thus also check whether we are in the base-state with j = 0

and that pk0 is the genesis public-key.

The verifier and prover for the IVC scheme can be seen below:
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Algorithm IVC.PROVER

Constants
RIVC =

(
R

(p)
IVC, R

(q)
IVC

)
The IVC circuit as defined above.

s0 = (σ0, 0, pk0) The base IVC-state.
Inputs

si−1 = (σi−1, ji−1, pki−1) The previous IVC-state.
πi−1 =

(
π

(p)
i−1, π

(q)
i−1

)
The previous IVC-proof.

acci−1 =
(

acc(p)
i−1, acc(q)

i−1

)
The previous IVC-accumulator.

si = (σi, ji, pki) The next IVC-state
Output

(S, Proof , Acc) The values for the next IVC iteration.
Require: F ′(si−1, si) = ⊤
Require: ji = ji−1 + 1

1: Compute the next IVC-proof, πi:
2: Define the witness for the IVC-circuit:

x
(p)
i−1 := {R(p)

IVC, s0, si−1, acc
(p)
i−1}

x
(q)
i−1 := {R(q)

IVC, acc
(q)
i−1}

w
(p)
i := {x(p)

i−1, π
(p)
i−1, acc(p)

i−1, si−1}
w

(q)
i := {x(q)

i−1, π
(q)
i−1, acc(q)

i−1}
3: Define the public inputs for the IVC-circuit:

x
(p)
i := {R(p)

IVC, s0, si, acc
(p)
i }

x
(q)
i := {R(q)

IVC, acc
(q)
i }

4: Compute the proofs:
π

(p)
i := PLONK.PROVER

(
R

(p)
IVC, x

(p)
i , w

(p)
i

)
π

(q)
i := PLONK.PROVER

(
R

(q)
IVC, x

(q)
i , w

(q)
i

)
πi :=

(
π

(p)
i , π

(q)
i

)
5: Compute the next accumulator, acci:
6: Parse q(p) from π

(p)
i−1, and q(q) from π

(q)
i−1.

7: Run the AS.PROVER.
acc(p)

i = AS.PROVER
(

q(p), acc(p)
i−1

)
acc(q)

i = AS.PROVER
(

q(q), acc(q)
i−1

)
acci =

(
acc(p)

i , acc(q)
i

)
8: Output (si, πi, acci)
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Algorithm IVC.VERIFIER

Constants
RIVC =

(
R

(p)
IVC, R

(q)
IVC

)
The IVC circuit as defined above.

s0 = (σ0, 0, pk0) The base IVC-state.
Inputs

si = (σi, ji, pki) The current IVC-state.
πi =

(
π

(p)
i , π

(q)
i

)
The current IVC-proof.

acci =
(

acc(p)
i , acc(q)

i

)
The current IVC-accumulator.

Output
Result(⊤,⊥) Returns ⊤ if the verifier accepts and ⊥ if the verifier rejects.

1: if si
?= s0 then ▷ If this is true, then the proofs will be invalid and unnecessary.

2: return ⊤.
3: end if
4: Verify the accumulators using the accumulation scheme decider:

AS.DECIDER
(

acc(p)
i

)
?= AS.DECIDER

(
acc(q)

i

)
?= ⊤

5: Verify the Plonk-proofs:
x

(p)
i := {R(p)

IVC, s0, si, acc
(p)
i }

x
(q)
i := {R(q)

IVC, acc
(q)
i }

PLONK.VERIFIER
(

R
(p)
IVC, x

(p)
i , π

(p)
i

)
?= PLONK.VERIFIER

(
R

(q)
IVC, x

(q)
i , π

(q)
i

)
?= ⊤

6: If the above two checks pass, then output ⊤, else output ⊥.

Consider the IVC-chain from Figure 5 run n times. As in the “simple” SNARK IVC construction, if IVC.VERIFIER
accepts at the end, then we get a chain of implications:

IVC.VERIFIER(RIV C , xn = {s0, sn, acci}, πn) = ⊤ =⇒(
c

(i)
0 ∨ c

(i)
V

)
∧ c

(i)
F =⇒

c
(i)
VFp
∧ c

(i)
ASp
∧ c

(i)
VFq
∧ c

(i)
ASq
∧ F ′(sn−1, sn) =⇒

c
(i−1)
VFp

∧ c
(i−1)
ASp

∧ c
(i−1)
VFq

∧ c
(i−1)
ASq

∧ F ′(sn−2, sn−1) =⇒ . . .

s1−1 = s0 ∧ F ′(s0, s1)

Since IVC.VERIFIER runs AS.DECIDER, the previous accumulator is valid, and by recursion, all previous accumulators
are valid, given that each AS.VERIFIER accepts. Therefore, if a AS.VERIFIER accepts, that means that the evaluation
proofs are valid. We defined PLONK.VERIFIERFAST, s.t. it verifies correctly provided the q’s are valid evaluation
proofs. This allows us to recurse through this chain of implications.

From this we learn:

1. ∀i ∈ [2, n] : AS.VERIFIER(π(p)
i−1, acc(p)

i−1, acc(p)
i ) = AS.VERIFIER(π(q)

i−1, acc(q)
i−1, acc(q)

i ) = ⊤, i.e, all accumulators
are accumulated correctly.

2. ∀i ∈ [2, n] : PLONK.VERIFIERFAST(R(p)
IV C , x

(p)
i−1, π

(p)
i−1) = PLONK.VERIFIERFAST(R(p)

IV C , x
(p)
i−1, π

(p)
i−1) = ⊤, i.e,

all the proofs are valid.

These points in turn imply that ∀i ∈ [n] : F (si−1) = si, therefore, sn = F n(s0). From this discussion it should be
clear that an honest prover will convince an honest verifier, i.e. completeness holds. As for soundness, it should
mostly depend on the soundness of the underlying PCS, accumulation scheme and Plonk7.

As for efficiency:

• The runtime of IVC.PROVER is:
7A more thorough soundness discussion would reveal that running the extractor on a proof-chain of length n actually fails, as argued

by Valiant in his original 2008 paper. Instead he constructs a proof-tree of size O(lg(n)) size, to circumvent this. However, practical
applications conjecture that the failure of the extractor does not lead to any real-world attack, thus still achieving constant proof sizes,
but with an additional security assumption added.
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– Step 4: The cost of running ASDL.PROVER, O(d).
– Step 7: The cost of running PLONK.PROVER, O(d).

Totalling O(d). If the prover is required to compute the next state si, it’s assumed to be at most linear in d.
For a chain of signatures, it’s well within bounds.

• The runtime of IVC.VERIFIER is:

– Step 4: The cost of running ASDL.DECIDER, O(d).
– Step 5: The cost of running PLONK.VERIFIER, O(d).

Totalling O(d).

Notice that although the runtime of IVC.VERIFIER is linear, it scales with d, not n. So the cost of verifying does not
scale with the number of iterations.

6.3 Arithmetization
In the implementation circuits are written in a custom-made eDSL - an embedded Domain Specific Language - that
lets a circuit-creator specify circuits as regular rust code. The circuit is modelled as a DAG - a Directed Acyclic
Graph - with the following kinds of nodes:

Scalars: W-S P-S + − × x−1

S S

SS

S

SS

S

SS

S

S

S

Booleans: W-B P-B = ∧ ∨
B B

FF

B

BB

B

BB

B

Elliptic Curves: W-P P-P +EC ×EC

B B B B

B B B B

B B

S B B

BB

Misc: H p→ q q → p =Assert Cx

B B B

B B B

Fp

Fq Fq

Fq

Fp

F F

F

Figure 7: The gates available as DAG nodes.

Wires can have two types: Fp or Fq. The other symbols denote:

• B: Either Fp or Fq, but whatever the concrete field element, it is constrained to be either 0, or 1, a bit.
• S: A scalar-field element, either Fp or Fq, depending on if the whether you model the Pallas (S = Fp) or Vesta

(S = Fq) curve.
• B: A base-field element, either Fp or Fq, depending on if the whether you model the Pallas (B = Fq) or Vesta

(B = Fp) curve.
• F: The gate works when instantiated with either Fp or Fq.

For both F and B it is invalid to provide B = Fp as one of the inputs and B = Fq as the other.

• Scalars:
– W-S: Witness scalar.
– P-S: Public input scalar.
– (+): Add two scalars.
– (−): Subtract two scalars.
– (×): Multiply two scalars.
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– (x−1): Compute the inverse of x.
• Booleans:

– W-B: Witness Boolean, of either Fp or Fq.
– P-B: Public input Boolean, of either Fp or Fq.
– (=): Equality gate, taking two inputs of the same type, of either Fp or Fq. If two Fp elements are inputted,

the resulting Boolean element will be an Fp element constrained to be either 0 or 1, with the converse
being true if both inputs are Fq elements.

– (∧): AND gate, taking two Boolean-constrained inputs of the same type, of either Fp or Fq. As with the
equality gate, the output has the same type as the input.

– (∨): OR gate, taking two Boolean-constrained inputs of the same type, of either Fp or Fq. As with the
equality gate, the output has the same type as the input.

• Elliptic Curves:
– W-P : Witness curve point, in affine form, constrained to fit the curve equation.
– P-P : Public input curve point, in affine form, constrained to fit the curve equation.
– (+EC): Add two elliptic curve points.
– (×EC): Scale a point with a scalar, it is implicit that the scalar is input passed from the scalar-field to

the base-field.
• Miscellaneous:

– H: Performs five rounds of the Poseidon hashing on the three given base-field elements, representing the
Poseidon sponge state.

– p→ q: Message passes an Fp element to the Fq circuit.
– q → p: Message passes an Fq element to the Fp circuit.
– (=Assert): Asserts that the two field elements of the same type are equal.
– Cx: A constant gate, outputting a fixed value x of either Fp or Fq.

We can represent our previous example circuit from Figure 4 using these nodes:

C3 W-Sx1 W-Sx2 C5

× ×

S S S S

×

S S

× C47

S S

=Assert

S S

Figure 8: The example circuit from the Figure 4, as a DAG, using the defined DAG nodes.

To arithmetize our program, yielding the polynomials required by the Plonk prover and verifier, we need to extract
the necessary constraint table from the circuit and interpolate the columns to get the polynomials. We first define
some useful objects:

WireId = N (A unique sequential id for each wire),
SlotId = N× N (An entry in the constraint table, e.g. (4,3) refers to the fourth row, third column),
WireType = {Fp,Fq} (Wires have a type, because a wire value can either be Fp or Fq),

And a GateType, describing what kind of gate a node is:

63



GateType = {
”W-S”, ”P-S”, ”(−)”, ”(+)”, ”(×)”, ”(x−1)”,

”W-B”, ”P-S”, ”(=)”, ”(∧)”, ”(∨)”,

”W-P”, ”P-P”, ”(+EC)”, ”(×EC)”,

”H”, ”p→ q”, ”q → p”
}

The DAG can then be defined, with each vertex containing a GateType, n WireId’s representing the id’s of the
incoming wires and m WireId’s representing the id’s of the outgoing wires. The edges have no associated data:

G = (V ∈ GateType×WireIdn ×WireIdm, E ∈ {})

We describe an algorithm, trace, that generally takes a circuit and processes it into the constraint table. We iterate
through the DAG in topological order, processing each node such that all its predecessors, the nodes with edges
pointing to it, are processed before it. Throughout the iteration we store and get values from two maps, ev, mapping
each wire to a value, and cc, mapping each wire to a set of slot-ids:

ev ∈WireId→ {Fp,Fq}, cc ∈WireId→ {SlotId}

The map ev represents the evaluated values of each wire, and cc represents the slot-ids, the entries of the constraint
table, that should be copy constrained to be equal. Then for each node in this iteration we have a node:

∀v ∈ V : v = (t ∈ GateType, i ∈WireIdn, o ∈WireIdm)

1. We look up all inputs for the current node v, in the ev map. These lookups will always yield a value since the
value has been written in a previous iteration, due to the topological iteration order:

ev(i) = [ev(i1), . . . , ev(in)]

2. We compute the evaluation of the operation applied to the input values. The gate type t decides what operation,
op ∈ Fn → Fm, shall be performed:

ev(o) = op(ev(i)), ∀k ∈ [n] : ev(ok) = ev
(i)
k

For example, for the addition gate, op would be defined as: op(+)([ev
(i)
1 , ev

(i)
2 ]) = ev

(i)
1 + ev

(i)
2

3. Now we can append a row to the constraint table with the computed values according to the specification in
the custom gates section. We also add any relevant coefficient rows.

4. Finally, we add the input and output wires to the copy constraint map:

∀k ∈ [n] : cc(ik) = i
(SlotId)
k ,

∀k ∈ [m] : cc(ok) = o
(SlotId)
k

It is important that we designate the first ℓ2 rows for public inputs, but other than that, the above loop describes
how to construct the constraint table as defined in the custom gate section. From here we just interpolate each
column to get the witness, selector, coefficient and copy constraint polynomials. To run this trace algorithm as a
verifier, that doesn’t have access to a valid witness, the verifier can run it with a fake witness and omit the private
witness table, getting the same selector, coefficient and copy constraint polynomials as the prover.

Example

Consider the following small example circuit:
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W-Sx1 P-Sx2

+ C5

S, wire_id = 1 S, wire_id = 2

=CC

S, wire_id = 3 S, wire_id = 4

Figure 9: A smaller example circuit representing the claim that I know a private scalar x1 and a public scalar
x2, s.t. x1 + x2 = 5.

We iterate through this circuit in topological order, so we can start with either of the two inputs. We
instantiate the arithmetization with x1 = 2, x2 = 3, but we leave them as variables in the following description:

• Node1 = (”W-Sx1”, i = [ ], o = [1]):
1. There are no inputs.
2. There is no computation so: opW-Sx1

([ ]) = ev(o) = [x1], ev(o1) = ev
(o)
1 = x1.

3. For private inputs, there is no rows added to the constraint table.
4. Since there is no row, there is no SlotId to add to the copy constraints.

• Node2 = (”P-Sx2”, i = [ ], o = [2]):
1. There are no inputs.
2. There is no computation so: opP-Sx2

([ ]) = ev(o) = [x2], ev(o1) = ev
(o)
1 = x2.

3. For public inputs, we add the following witnesses and selector polynomials:

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
x2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 0 0 0 0 0 0 0 0 0 0

4. We add the slot-id of x2 (1, 1) to the copy constraints of the output wire with id 2:

cc(o1 = 2) = cc(o1) ∪ { oSlotId
1 = (1, 1) }

• Node3 = (”(+)”, i = [1, 2], o = [3]):
1. We lookup the two inputs: ev(i) = [ev(i1 = 1) = x1, ev(i2 = 2) = x2].
2. Perform the computation:

op(+)(ev(i)) = ev(o) = [ev
(i)
1 + ev

(i)
2 ] = [x1 + x2] = [x3], ev(o1) = ev

(i)
1 = x3

3. For addition, we add the following witnesses and selector polynomials:

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
x1 x2 x3 0 0 0 0 0 0 0 0 0 0 0 0 0
ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 1 -1 0 0 0 0 0 0 0 0

4. We add the slot-ids to the copy constraints:

cc(i1 = 1) = cc(i1) ∪ { iSlotId
1 = (2, 1) }

cc(i2 = 2) = cc(i2) ∪ { iSlotId
2 = (2, 2) }

cc(o1 = 3) = cc(o1) ∪ { oSlotId
1 = (2, 3) }

• Node4 = (”C5”, i = [ ], o = [4]):
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1. There are no inputs.
2. There is no computation so:

opC5([ ]) = 5, ev = [ev
(i)
1 = 5], ev(o1) = ev

(i)
1 = 5

3. For a constant gate, we add the following witnesses and selector polynomials:

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 0 0 0 -5 0 0 0 0 0 0

4. We add the slot-id to the copy constraints:

cc(o1 = 4) = cc(o1) ∪ { oSlotId
1 = (3, 1) }

• Node5 = (”(=CC)”, i = [3, 4], o = [ ]):
1. We lookup the two inputs: ev(i) = [ev(i1 = 3) = x3, ev(i2 = 4) = 5]
2. There is no output, so no computation.
3. For a constant gate, we add the following witnesses and selector polynomials:

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
x3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 -1 0 0 0 0 0 0 0 0 0

4. We add the slot-id to the copy constraints:

cc(i1 = 3) = cc(i1) ∪ { iSlotId
1 = (4, 1) }

cc(i2 = 4) = cc(i2) ∪ { iSlotId
2 = (4, 2) }

Which finishes the arithmetization loop. If we arithmetized with x1 = 2, x2 = 3 we would get the following
table:

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
x2 = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1 = 2 x2 = 3 x3 = 5 0 0 0 0 0 0 0 0 0 0 0 0 0
x4 = 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3 = 5 x4 = 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ql qr qo qm qc qH qP q(+) q(·) q(=) qR

1 0 0 0 0 0 0 0 0 0 0
1 1 -1 0 0 0 0 0 0 0 0
1 0 0 0 -5 0 0 0 0 0 0
1 -1 0 0 0 0 0 0 0 0 0

The copy constraints were defined as:

cc(1) = { (2, 1) }
cc(2) = { (1, 1), (2, 2) }
cc(3) = { (2, 3), (4, 1) }
cc(4) = { (3, 1), (4, 2) }

Which gives us the following copy-constraint table:
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ωi id1 id2 id3 id4 id5 id6 σ1 σ2 σ3 σ4 σ5 σ6
ω1 1 5 9 13 17 21 6 5 9 13 17 21
ω2 2 6 10 14 18 22 2 1 4 14 18 22
ω3 3 7 11 15 19 23 8 7 11 15 19 23
ω4 4 8 12 16 20 24 10 3 12 16 20 24

From here, we just need to interpolate each column into a polynomial.

7 Implementation and Benchmarks
We implemented the Plonk prover and verifier in Rust, using the previous implementations[Jakobsen 2025] of ASDL
and PCDL as submodules. Both submodules still needed pretty significant changes however. Neither submodule
supported generic curves, which would be needed for Plonk instantiated over a cycle of curves. A new infrastructure
for setup parameters had to be implemented, that efficiently supported much higher degree polynomials, since the
IVC circuit is still quite large. The Fiat-Shamir hashing also needed to be changed over to a Poseidon sponge-based
construction, rather than Sha3, which we implemented ourselves. The Poseidon implementation was inspired by
Mina’s work, so we used the same parameters (Since we also use the fields from Pallas and Vesta in the hashing, just
like Mina’s Kimchi) and unit-tested that the hash-behaviour of our implementation was identical to theirs.

After this, the Plonk arithmetizer, prover, and verifier could be implemented and parametrized by a given curve,
either Pallas or Vesta. The implemented arithmetizer supports standard elliptic curve operations, Fiat-Shamir
oriented sponge-based hashing using Poseidon, regular scalar operations and Boolean operations. This is implemented
as a circuit (modelled as a directed acyclic graph) with wrappers around it, effectively creating an embedded domain
specific language for writing circuits in Rust. The frontend is so similar that the code to implement the in-circuit
verifiers for IVC looks almost identical to the Rust/Arkworks implementations. This made it much easier to
implement the relevant verifying circuits. Here’s an overview of the Rust crates8:

• Plonk: The Plonk Prover/Verifier, including arithmetization and IVC-circuit. This also includes all the
subcircuits needed for IVC (Poseidon, PCDL.SUCCINCTCHECK, ASDL.VERIFIER, PLONK.VERIFIER).

• Accumulation: Compromising of the PCS, PCDL, and the accumulation scheme, ASDL. This was already
implemented.

• Group: Code relating to evaluation domains, public parameters for PCDL (including caching them to binary
files), and wrapper traits and struct for the cycle of curves.

• Poseidon: The Poseidon hash function, implemented in Rust, not in-circuit.
• Schnorr: A simple Schnorr signature implementation, using Poseidon for the message hash function.

As the purpose of the code is to prototype the ideas presented, and get some benchmarks on the performance of the
scheme, there might be soundness bugs in the implementation. Obviously, the code should not be used in production.
However, any soundness bugs should not affect performance to any significant degree.

Before presenting the benchmarks, we first briefly discuss what performance is needed for our IVC approach to be
preferred. If Concordium created a light node implementation, there are several available ways to catch-up to the
current block and trust that the block is correct:

• Catch up as a full node would, validating each block, which would take days.
• Simply trust a full node, which is very insecure.
• Ask a lot of full nodes and if a quorum agrees that a given block is the current one, then use it. This is more

secure, but requires a lot of network traffic from previously unconnected peers.
• Verify only the blocks where the committee changes, which is one block per day.

The last option is definitely the preferred one, and thus our chain of signatures SNARK should compete with that
solution. Here we would need to verify 2 signatures per day (the other signature arises from Concordium’s Finality
layer) and some hashes. For this comparison we just focus on the signatures. We can now present the benchmarks
which ran on a 20 thread Thinkpad P50:

8The Plonk crate is 17,116 LOC, the accumulation crate is 2,940 LOC, the group crate is 4,240 LOC, the Poseidon crate is 948 LOC
and the Schnorr crate is 169 LOC
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• IVC-Prover: Parallel: ~300 s. Single Threaded: ~900 s.
• IVC-Verifier: Parallel: ~3 s. Single Threaded: ~9 s.
• Naive Signature Verification: Parallel: ~1300 signatures per second. Single Threaded: ~310 signatures per

second.

Assuming that the only bottleneck in this process is processing power would mean that for a multithreaded verifier,
it would take 1300 · 3 / 2 = 1950 days before the IVC solution was faster. Which is not ideal given the complexity of
the IVC construction, but it’s not far from being viable. If we instead look at the size of each “proof” involved,
starting with the IVC proof:

• Signature: 1 point, 1 scalar.
• EvalProof: 1 + 2 lg(n) = 1 + 16 = 17 points, 1 scalar.
• PlonkProof: 2 EvalProofs, 33 commitments (points), 74 polynomial evaluations (scalars). 67 points, 76 scalars.
• Accumulator: 1 EvalProof, 1 point, 3 scalars. 18 points, 4 scalars.
• IVC-Proof: 2 Accumulators, 2 PlonkProofs, 2 signatures, 2 public-keys (2 points), 2 j scalars. 174 points, 164

scalars,

Modelling each scalar as 256 bits and each point as 256 bits (255 bit field element and 1 additional sign bit), gives
us ~10 kB for a single IVC proof. Comparing to just verifying the signatures, after 87 days the IVC proof will be
smaller than the 174 signatures needed to verify the same claim. Obviously, if the committee changes more ofter
(say once an hour), the IVC approach will much more quickly become economical.

If the use-case is to create a single proof for a new blockchain committee once a day, ~5 minutes on a modern laptop
is not at all unreasonable. As for the verifier, it takes ~3 s, which isn’t ideal, but will be better than the naive
solution after 1950 days. The proof size is okay comparatively though, as the IVC proof will be smaller than the
naive solution after only 87 days. These results are pretty promising, especially considering that further optimization
should be possible.

8 Conclusion
The core goal for this thesis was to implement, benchmark, analyze and understand Incrementally Verifiable
Computation in its entirety, using the ideas put forward in the Halo paper[Bowe et al. 2019]. We also wished to
show whether an IVC chain of signatures could be practically useful in the blockchain industry with currently known
recursive SNARK technology. The benchmarks show that IVC may be a decent solution, but they do not definitively
show that the IVC solution is markedly better than the naive solution. Given that our results indicate that it’s
viable using our simplified recursive SNARK, then it should definitely be feasible for the more optimized Kimchi
and Halo2 protocols.

There are plenty of remaining optimizations and improvements. This SNARK is not quantum-safe, but if instantiated
with FRI and a corresponding accumulation scheme it should be able to be adapted with only minor modifications.
Of course, the omitted optimizations, like the Maller optimization, could be added back for smaller proof sizes
and a faster verifier. Zero-knowledge might not be particularly useful for IVC, but adding it would be useful if
the Plonk construction is also used as a general-purpose ZK-SNARK. Lookups can also be very useful, for certain
operations like XOR, which would be especially important if the SNARK should be able to model SHA3 efficiently.
We investigated Plonkup[Luke Pearson 2020] for this, but ultimately deemed it unnecessary to achieve primary goal
of IVC.

A Appendix
A.1 Security of Elliptic Curve Addition Constraints
Analysis

1. q(+) · (xq − xp) · ((xq − xp) · λ− (yq − yp)) = 0

Which ensures:
xq ̸= xp =⇒ λ = yq−yp

xq−xp

(P ̸= Q ∧ P ̸= −Q) =⇒ λ = yq−yp

xq−xp

68



2. q(+) · (1− (xq − xp) · α) · (2yp · λ− 3x2
p) = 0

Meaning that xq = xp =⇒ λ = 3x2
p

2yp
, except if yp = 0, then:

0 = (1− (xq − xp) · α) · (2yp · λ− 3x2
p) = (2yp · λ− 3x2

p) = −3x2
p

Which is only satisfied if xp = 0. So this means that the constraint ensures:

xq = xp ∧ yp ̸= 0 =⇒ λ = 3x2
p

2yp

xq = xp ∧ yp = 0 =⇒ xp = 0
(P = Q ∨Q = −P ) ∧ P ̸= O ∧Q ̸= O =⇒ λ = 3x2

p

2yp

3. a. q(+) · (xp · xq · (xq − xp) · (λ2 − xp − xq − xr) = 0
b. q(+) · (xp · xq · (xq − xp) · (λ · (xp − xr)− yp − yr) = 0
c. q(+) · (xp · xq · (yq + yp) · (λ2 − xp − xq − xr) = 0
d. q(+) · (xp · xq · (yq + yp) · (λ · (xp − xr)− yp − yr) = 0

It’s clear that if (xp · xq · (xq − xp) ̸= 0 =⇒ xp ̸= 0 ∧ xq ̸= 0 ∧ xq ̸= xp. So 3.a states:

xp ̸= 0 ∧ xq ̸= 0 ∧ xq ̸= xp =⇒ xr = λ2 − xp − xq.

Constraint 3.b, 3.c, 3.d have similar meaning. Combining 3.a, 3.b, 3.c, 3.d yields:

xp ̸= 0 ∧ xq ̸= 0 ∧ xq ̸= xp =⇒ xr = λ2 − xp − xq ∧ yr = λ · (xp − xr)− yp

xp ̸= 0 ∧ xq ̸= 0 ∧ yq ̸= −yp =⇒ xr = λ2 − xp − xq ∧ yr = λ · (xp − xr)− yp

Or equivalently:

xp ̸= 0 ∧ xq ̸= 0 ∧ xq ̸= xp ∧ yq ̸= −yp =⇒ xr = λ2 − xp − xq ∧ yr = λ · (xp − xr)− yp

From the curve we know that any point where x or y is 0, is invalid, except if it’s the identity point. We can
also combine the two implications:

xp ̸= 0 ∧ yp ̸= 0 ∧ xq ̸= 0 ∧ yq ̸= 0 ∧ xq ̸= xp ∧ yq ̸= −yp =⇒ xr = λ2 − xp − xq ∧ yr = λ · (xp − xr)− yp

Which simplifies to:

P ̸= O ∧Q ̸= O ∧−P ̸= Q =⇒ xr = λ2 − xp − xq ∧ yr = λ · (xp − xr)− yp

4. a. q(+) · (1− xp · β) · (xr − xq) = 0
b. q(+) · (1− xp · β) · (yr − yq) = 0

Meaning that:
xp = 0 ∧ yp = 0 =⇒ xr = xq ∧ yr = yq

P = O =⇒ R = Q

5. a. q(+) · (1− xq · β) · (xr − xp) = 0
b. q(+) · (1− xq · β) · (yr − yp) = 0

Meaning that:
xq = 0 ∧ yq = 0 =⇒ xr = xp ∧ yr = yp

Q = O =⇒ R = P

6. a. q(+) · (1− (xq − xp) · α− (yq + yp) · δ) · xr = 0
b. q(+) · (1− (xq − xp) · α− (yq + yp) · δ) · yr = 0

Meaning that:
xq = xp ∧ yq = −yp =⇒ xr = 0 ∧ yr = 0
Q = −P =⇒ R = O

Security:

Analyzing the cases of P + Q = R:

• O +O = O
– Completeness:

1. Holds because P = Q
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2. Holds because P = Q = O
3. Holds because P = Q = O
4. Holds because P = O ∧R = Q = O
5. Holds because Q = O ∧R = P = O
6. Holds because Q = −P = O ∧R = O

– Soundness: R = O is the only solution to 6.
• P +O = P : P ̸= O

– Completeness:
1. P ̸= Q, so λ = yq−yp

xq−xp
is a solution

2. Holds because Q = O
3. Holds because Q = O
4. Holds because P ̸= O
5. Holds because Q = O ∧R = P
6. Holds because Q ̸= −P

– Soundness: R = O is the only solution to 5.
• O + Q = Q : Q ̸= O

– Completeness:
1. P ̸= Q, so λ = yq−yp

xq−xp
is a solution

2. Holds because P = O
3. Holds because P = O
4. Holds because P = O ∧R = Q
5. Holds because Q ̸= O
6. Holds because Q ̸= −P

– Soundness: R = O is the only solution to 4.
• P + Q = 2P : P = Q ̸= O

– Completeness:
1. Holds because P = Q

2. P = Q, so λ = 2x2
p

2yp
is a solution

3. Holds because P ≠ O∧Q ≠ 0∧Q ≠ −P , so R = (xr = λ2 − xp − xq, yr = λ · (xp − xr)− yp). Which
is consistent with point doubling, since xp = xq and λ = 2x2

p

2yp
.

4. Holds because P ̸= O
5. Holds because Q ̸= O
6. Holds because Q ̸= −P

– Soundness: λ is computed correctly (2). R = 2P is the only solution to 3.
• P + Q = O : P = −Q ̸= O

– Completeness:
1. Holds because P = −Q

2. P = Q, so λ = 2x2
p

2yp
is a solution

3. Holds because −P = Q
4. Holds because P ̸= O
5. Holds because Q ̸= O
6. Holds because Q = −P ∧R = O

– Soundness: R = O is the only solution to 6.
• P + Q = O : P ̸= −Q, P ̸= Q, P ̸= O, Q ̸= O

– Completeness:
1. P ̸= Q ∧ P ̸= −Q, so λ = yq−yp

xq−xp
is a valid solution

2. Holds because P ̸= Q ∧Q ̸= −P
3. Holds because P ≠ −Q, so R = (xr = λ2− xp− xq, yr = λ · (xp− xr)− yp). Which is consistent with

affine point addition since λ = yq−yp

xq−xp
.

4. Holds because P ̸= O
5. Holds because Q ̸= O
6. Holds because Q ̸= −P

– Soundness: λ is computed correctly (2). R = P + Q is the only solution
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A.2 Gadgets
We present the gadgets needed to create the IVC circuit for completeness. We omit the PLONK.VERIFIER as it’s
exactly identical to the one defined in the Plonk section, but with verification failure and success modelled with
Booleans.

A.2.1 Poseidon Sponges

The Poseidon State can be one of the following values:

SpongeState =



Absorbed(0)
Absorbed(1)
Absorbed(2)
Squeezed(1)
Squeezed(2)

The SpongeState shouldn’t be part of the circuit, it just governs what when the full poseidon gates should be
added to the circuit, i.e. when enough values has been absorbed and can thus be modelled outside the circuit.

Inner Sponge Absorb Gadget: Absorbs a list of field elements into the poseidon sponge.
Inputs

s : F3 The inner state of the sponge (3 field elements).
xs The field elements that the sponge should absorb.

Output
s : F3 The sponge inner state after absorption.

1: for x in xs do
2: if sponge_state = Absorbed(n) ∧ n < 2 then
3: sponge_state = Absorbed(n + 1)
4: sn = x
5: else if sponge_state = Absorbed(2) then
6: for i ∈ [0, 10] do ▷ Permute 55 times by using the Hades Gate 11 times
7: s = PoseidonBlockCipher(i, c, s)
8: end for
9: sponge_state = Absorbed(1)

10: s0 = s0 + x
11: else
12: sponge_state = Absorbed(1)
13: s0 = s0 + x
14: end if
15: end for
16: return s
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Inner Sponge Squeeze Gadget: Squeezes a field element from the the poseidon sponge.
Inputs

s : F3 The inner state of the sponge (3 field elements).
Output

(s, x) : (F3,F) The sponge inner state after absorption and the squeezed element.
1: if sponge_state = Squeezed(n) ∧ n < 2 then
2: sponge_state = Squeezed(n + 1)
3: Return x = sn

4: else
5: for i ∈ [0, 10] do ▷ Permute 55 times by using the Hades Gate 11 times
6: s = HadesGatei(c, s)
7: end for
8: sponge_state = Squeezed(1)
9: return (s, x = s0)

10: end if

Outer Sponge Absorb Affine Gadget: Absorbs affine points into the inner sponge.
Inputs

s : F3
B The inner state of the sponge (3 field elements).

P s : E(FB)k The affine points to absorb
Output

s : F3
B The sponge inner state after absorption.

1: for P in P s do
2: if P

?= O then
3: InnerAbsorb(s, 0)
4: InnerAbsorb(s, 0)
5: else
6: InnerAbsorb(s, P.x)
7: InnerAbsorb(s, P.y)
8: end if
9: end for

Outer Sponge Absorb Field Element Gadget: Absorbs field elements into the inner sponge.
Inputs

s : F3
B The inner state of the sponge (3 field elements).

xs : Fk
S The field elements to absorb

Output
s : F3

B The sponge inner state after absorption.
1: for x in xs do
2: InnerAbsorb(s, x)
3: end for
4: return s
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Outer Sponge Absorb Scalar Gadget: Absorbs scalars into the inner sponge.
Inputs

s : F3
B The inner state of the sponge (3 field elements).

xs ∈ Fk
S The scalars to absorb

Output
s : F3

B The sponge inner state after absorption.
1: for x in xs do
2: Input pass x.
3: if |Scalar-Field| < |Base-Field| then
4: InnerAbsorb(s, x)
5: else
6: Decompose x into h, l where h represents the high-bits of x and l represents the low-bit.
7: InnerAbsorb(s, h)
8: InnerAbsorb(s, l)
9: end if

10: end for
11: return s

Outer Sponge Squeeze Scalar Gadget: Squeezes a scalar from the inner sponge.
Inputs

s : F3
B The inner state of the sponge (3 field elements).

Output
(s, x) : (F3

B,FS) The sponge inner state after squeezing and the squeezed scalar.
1: x = InnerSqueeze(s)
2: if x < |Base-Field| then
3: return s and x input passed.
4: else
5: return s and h input passed, where h is the high 254 bits of x.
6: end if

We lose a single bit of security if x ≥ |Base-Field|, but this only increases the odds of an attack by a small constant
amount, which is still negligible.

A.2.2 PCDL

The below algorithm is the non-ZK version of the algorithm specified in the previous accumulation scheme
project[Jakobsen 2025].
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Algorithm 9 PCDL.SUCCINCTCHECKρ0

Inputs
C : E(FB) A commitment to the coefficients of p.
d : N A degree bound on p.
z : FS The element that p is evaluated on.
v : FS The claimed element v = p(z).
π : EvalProof The evaluation proof produced by PCDL.OPEN.

Output
(B, (FS,d[X],E(FB))) The algorithm will either succeed and output (⊤, (h : FS,d[X], U : E(FB))

if π is a valid proof and otherwise fail (⊥, (h : FS,d[X], U : E(FB)).
Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Parse π as (L, R, U := G(0), c := c(0)) and let n = d + 1.
2: Compute the 0-th challenge: ξ0 := ρ0(C, z, v), and set H ′ := ξ0H ∈ E(FB).
3: Compute the group element C0 := C + vH ′ ∈ E(FB).
4: for i ∈ [lg(n)] do
5: Generate the i-th challenge: ξi := ρ0(ξi−1, Li, Ri) ∈ FS .
6: Compute the i-th commitment: Ci := ξ−1

i Li + Ci−1 + ξiRi ∈ E(FB).
7: end for
8: Define the univariate polynomial h(X) :=

∏lg(n)−1
i=0 (1 + ξlg(n)−iX

2i) ∈ FS,d[X].
9: Compute the evaluation v′ := c · h(z) ∈ FS .

10: b = Clg(n)
?= cU + v′H ′

11: Output (b, (h(X), U)).

A.2.3 ASDL

The below algorithms are the non-ZK versions of the algorithms specified in the previous accumulation scheme
project[Jakobsen 2025].

Algorithm 10 ASDL.COMMONSUBROUTINE

Inputs
q : Instancem New instances and accumulators to be accumulated.

Output
(B, (E(FB),N,FS ,FS,d[X])) The algorithm will either succeed (⊤, (E(FB),N,F,FS,d[X])) if the in-

stances has consistent degree and hiding parameters and will otherwise fail
(⊥, (E(FB),N,F,FS,d[X])).

Require: (D + 1) = 2k, where k ∈ N
1: Parse d from q1.
2: Let b = ⊤
3: for j ∈ [0, m] do
4: Parse qj as a tuple (Cj , dj , zj , vj , πj).
5: Compute (bi, (hj(X), Uj)) := PCDL.SUCCINCTCHECKρ0(Cj , dj , zj , vj , πj).
6: b = b ∧ bi

7: Check that bi = dj
?= d

8: b = b ∧ bi

9: end for
10: Compute the challenge α := ρ1(h, U) ∈ FS
11: Let the polynomial h(X) :=

∑m
j=1 αjhj(X) ∈ FS,d[X]

12: Compute the accumulated commitment C :=
∑m

j=1 αjUj

13: Compute the challenge z := ρ1(C, h(X)) ∈ FS .
14: Randomize C: C̄ := C ∈ E(FB).
15: Output (b, (C̄, D, z, h(X))).
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Algorithm 11 ASDL.VERIFIER

Inputs
q : Instancem New instances and possible accumulator to be accumulated.
acci : Acc The accumulator that accumulates q. Not the previous accumulator acci−1.

Output
Result(⊤,⊥) The algorithm will either succeed (⊤) if acci correctly accumulates q and

otherwise fail (⊥).
Require: (D + 1) = 2k, where k ∈ N

1: Parse acci as (C̄, d, z, v, _)
2: The accumulation verifier computes (bv, (C̄ ′, d′, z′, h(X))) := ASDL.COMMONSUBROUTINE(q)
3: b(=) = C̄ ′ ?= C̄ ∧ d′ ?= d ∧ z′ ?= z ∧ h(z) ?= v.
4: return b(=) ∧ bv

A.2.4 Schnorr Signatures

Algorithm 12 SCHNORR.VERIFIER

Inputs
pk : E(FB) The public key.
σ : Signature The signature.
m : Fk

B The signed message.
Output

BB A Boolean representing whether the verification succeeded.
1: Parse σ as (s, r)
2: e = H(pk, r, m).
3: return sG

?= R + eP .
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